scholarly journals Expression and possible role of creatine transporter in the brain and at the blood-cerebrospinal fluid barrier as a transporting protein of guanidinoacetate, an endogenous convulsant

2008 ◽  
Vol 107 (3) ◽  
pp. 768-778 ◽  
Author(s):  
Masanori Tachikawa ◽  
Jun Fujinawa ◽  
Masato Takahashi ◽  
Yasuyuki Kasai ◽  
Masahiro Fukaya ◽  
...  
1969 ◽  
Vol 21 (02) ◽  
pp. 294-303 ◽  
Author(s):  
H Mihara ◽  
T Fujii ◽  
S Okamoto

SummaryBlood was injected into the brains of dogs to produce artificial haematomas, and paraffin injected to produce intracerebral paraffin masses. Cerebrospinal fluid (CSF) and peripheral blood samples were withdrawn at regular intervals and their fibrinolytic activities estimated by the fibrin plate method. Trans-form aminomethylcyclohexane-carboxylic acid (t-AMCHA) was administered to some individuals. Genera] relationships were found between changes in CSF fibrinolytic activity, area of tissue damage and survival time. t-AMCHA was clearly beneficial to those animals given a programme of administration. Tissue activator was extracted from the brain tissue after death or sacrifice for haematoma examination. The possible role of tissue activator in relation to haematoma development, and clinical implications of the results, are discussed.


2019 ◽  
Vol 20 (12) ◽  
pp. 2982 ◽  
Author(s):  
Gil Yong Park ◽  
Angelo Jamerlan ◽  
Kyu Hwan Shim ◽  
Seong Soo A. An

Transthyretin (TTR) is a thyroid hormone-binding protein which transports thyroxine from the bloodstream to the brain. The structural stability of TTR in tetrameric form is crucial for maintaining its original functions in blood or cerebrospinal fluid (CSF). The altered structure of TTR due to genetic mutations or its deposits due to aggregation could cause several deadly diseases such as cardiomyopathy and neuropathy in autonomic, motor, and sensory systems. The early diagnoses for hereditary amyloid TTR with cardiomyopathy (ATTR-CM) and wild-type amyloid TTR (ATTRwt) amyloidosis, which result from amyloid TTR (ATTR) deposition, are difficult to distinguish due to the close similarities of symptoms. Thus, many researchers investigated the role of ATTR as a biomarker, especially its potential for differential diagnosis due to its varying pathogenic involvement in hereditary ATTR-CM and ATTRwt amyloidosis. As a result, the detection of ATTR became valuable in the diagnosis and determination of the best course of treatment for ATTR amyloidoses. Assessing the extent of ATTR deposition and genetic analysis could help in determining disease progression, and thus survival rate could be improved following the determination of the appropriate course of treatment for the patient. Here, the perspectives of ATTR in various diseases were presented.


1937 ◽  
Vol 33 (5) ◽  
pp. 523-532
Author(s):  
L. S. Stern

Evaluation of the results obtained in the study of the effect of cerebrospinal fluid on various physiological systems is complicated by the fact that the composition of the cerebrospinal fluid depends to a large extent on the state of the blood-brain barrier, and thus reflects not only a certain physiological state of the central nervous system. There is no doubt that the metabolic products of the brain, secreted into the cerebrospinal fluid, exert their effect not only on the activity of various parts of the brain and on the coordination of their functions, but due to the rapid transition of these substances from the cerebrospinal fluid into the general circulation, they also affect as a humoral a factor on the function of other physiological systems, as it was revealed in a number of experiments carried out in recent years in our laboratories. For example, it turned out that under various influences (direct irritation of the central nervous system in experimental epilepsy, irritation of the sensory nerves associated with severe pain, traumatic shock, toxemic or chemical shock, as well as starvation, prolonged insomnia, etc.) - substances appear in the cerebrospinal fluid that affect the state and activity of the cardiovascular system, the tone of smooth muscles, the excitability of the central nervous system, etc. These are the results of the work of our employees: Zeitlin, Weiss, Harles, Voskresensky, Gromakovskaya , Bazarova, Gotsman, Komarova and others. Work in this direction continues at the present time.


1991 ◽  
Vol 5 (3) ◽  
pp. 299-302 ◽  
Author(s):  
Avinash Prasad ◽  
Vijay S. Madan ◽  
Tarvinder B. S. Buxi ◽  
Pushpendra N. Renjen ◽  
Rakesh Vohra

Author(s):  
M. Zoghi-Moghadam ◽  
Ali Sadegh ◽  
Charles Watkins

The blunt head impacts due to vehicular collisions, contact sports or falls cause relative motion between the brain and skull and an increase in contact and shear stresses in meningeal region. Several models have been developed to better understand brain injuries. In this study the mechanical role of the fibrous trabeculae and the Cerebrospinal Fluid (CSF) in Subarachnoid space (SAS) is investigated. Two-dimensional solid and fluid global models of the head and a local model of the SAS trabeculae were developed. The CSF pressure distribution and the trabeculae deformations were determined. It is concluded that the arachnoid trabeculae reduce the pressure in the CSF and both play a major role in damping the blunt head impact.


2018 ◽  
Vol 17 (10) ◽  
pp. 743-756 ◽  
Author(s):  
Arturo Solís Herrera ◽  
Ghulam Md Ashraf ◽  
María del Carmen Arias Esparza ◽  
Vadim V. Tarasov ◽  
Vladimir N. Chubarev ◽  
...  

Background & Objective: Regulation of composition, volume and turnover of fluids surrounding the brain and damp cells is vital. These fluids transport all substances required for cells and remove the unwanted materials. This regulation tends to act as barrier to prevent free exchange of materials between the brain and blood. There are specific mechanisms concerned with fluid secretion of the controlled composition of the brain, and others responsible for reabsorption eventually to blood and the extracellular fluid whatever their composition is. The current view assumes that choroidal plexuses secrete the major part of Cerebrospinal Fluid (CSF), while the Blood-Brain Barrier (BBB) has a much less contribution to fluid production, generating Interstitial Fluid (ISF) that drains to CSF. The skull is a rigid box; thereby the sum of volumes occupied by the parenchyma with its ISF, related connective tissue, the vasculature, the meninges and the CSF must be relatively constant according to the Monroe-Kellie dogma. This constitutes a formidable challenge that normal organisms surpass daily. The ISF and CSF provide water and solutes influx and efflux from cells to these targeted fluids in a quite precise way. Microvessels within the parenchyma are sufficiently close to every cell where diffusion areas for solutes are tiny. Despite this, CSF and ISF exhibit very similar compositions, but differ significantly from blood plasma. Many hydrophilic substances are effectively prevented from the entry into the brain via blood, while others like neurotransmitters are extremely hindered from getting out of the brain. Anatomical principle of the barrier and routes of fluid transfer cannot explain the extraordinary accuracy of fluids and substances needed to enter or leave the brain firmly. There is one aspect that has not been deeply analyzed, despite being prevalent in all the above processes, it is considered a part of the CSF and ISF dynamics. This aspect is the energy necessary to propel them properly in time, form, space, quantity and temporality. Conclusion: The recent hypothesis based on glucose and ATP as sources of energy presents numerous contradictions and controversies. The discovery of the unsuspected intrinsic ability of melanin to dissociate and reform water molecules, similar to the role of chlorophyll in plants, was confirmed in the study of ISF and CSF biology.


1984 ◽  
Vol 60 (4) ◽  
pp. 800-802 ◽  
Author(s):  
Jacob R. Rachlin ◽  
Richard G. Fessler ◽  
Eugene E. Duda ◽  
Frederick D. Brown ◽  
Victor Fang ◽  
...  

✓ Much interest has recently been focused on the possible role of the endogenous opiates in the perception of pain in humans. Several investigators have examined the levels of these substances in human cerebrospinal fluid (CSF) in attempts to identify the mechanisms by which electrical stimulation of the brain might induce analgesia. Most of these CSF samples were collected at the time of ventriculography or myelography. In the present study, the levels of β-endorphin in the CSF of 22 patients undergoing myelography were examined before and after the injection of a contrast agent. β-Endorphin increased an average of 356% (p < 0.0005) 15 to 20 minutes following the injection of contrast material into the lumbar subarachnoid space. Thus, routine myelography may have a profound effect on the levels of β-endorphin measured by radioimmunoassay in human CSF, and great care must be taken in interpreting the significance of changes seen in β-endorphin levels in CSF collected from patients at the time of myelography or ventriculography. The effect of the injection of contrast material on β-endorphin immunoreactivity must be distinguished from the postulated effects of any analgesia-inducing therapy.


1991 ◽  
Vol 261 (4) ◽  
pp. R828-R834 ◽  
Author(s):  
M. Shibata ◽  
C. W. Leffler ◽  
D. W. Busija

The role of prostanoids in mediating cerebrovascular responses to cortical spreading depression (CSD) was examined in anesthetized rabbits. CSD was elicited by KCl microinjection, and its propagation was monitored electrophysiologically. Pial arterial diameter was determined using a closed cranial window and intravital microscopy, and regional cerebral blood flow (rCBF) was determined using laser flowmetry. Levels of peri-arachnoid cerebrospinal fluid prostanoids were determined by radioimmunoassay. CSF increased pial arteriolar diameter 62% and rCBF 354% over the baseline levels. Locations of propagating CSD, dilating pial arteriole, and increased rCBF were always closely associated spatiotemporally. Cerebrospinal fluid prostanoid levels increased during single CSD-induced arteriolar dilation, and they were further augmented during multiple CSDs. Indomethacin enhanced both CSD-induced vasodilation (88%) and rCBF increase (580%), but it decreased the cerebrospinal fluid levels of prostanoids below the baseline levels and prevented their increase during CSD-induced vasodilation. These results indicate that prostanoids are synthesized from neurons or glial cells and/or the brain vessels and, as the net result, counteract pial arteriolar dilation and rCBF increase during CSD. In addition, they support the hypothesis that the vasodilation is caused primarily by neurogenic factors associated with CSD.


Sign in / Sign up

Export Citation Format

Share Document