Sex Differences and the Effects of Alcohol on Immune Response in Male and Female Rats

1993 ◽  
Vol 17 (4) ◽  
pp. 832-840 ◽  
Author(s):  
C. J. Grossman ◽  
M. Nienaber ◽  
C. L. Mendenhall ◽  
P. Hurtubise ◽  
G. A. Roselle ◽  
...  
2021 ◽  
pp. svn-2020-000834
Author(s):  
Koteswara Rao Nalamolu ◽  
Bharath Chelluboina ◽  
Casimir A Fornal ◽  
Siva Reddy Challa ◽  
David M Pinson ◽  
...  

Background and purposeThe therapeutic potential of different stem cells for ischaemic stroke treatment is intriguing and somewhat controversial. Recent results from our laboratory have demonstrated the potential benefits of human umbilical cord blood-derived mesenchymal stem cells (MSC) in a rodent stroke model. We hypothesised that MSC treatment would effectively promote the recovery of sensory and motor function in both males and females, despite any apparent sex differences in post stroke brain injury.MethodsTransient focal cerebral ischaemia was induced in adult Sprague-Dawley rats by occlusion of the middle cerebral artery. Following the procedure, male and female rats of the untreated group were euthanised 1 day after reperfusion and their brains were used to estimate the resulting infarct volume and tissue swelling. Additional groups of stroke-induced male and female rats were treated with MSC or vehicle and were subsequently subjected to a battery of standard neurological/neurobehavioral tests (Modified Neurological Severity Score assessment, adhesive tape removal, beam walk and rotarod). The tests were administered at regular intervals (at days 1, 3, 5, 7 and 14) after reperfusion to determine the time course of neurological and functional recovery after stroke.ResultsThe infarct volume and extent of swelling of the ischaemic brain were similar in males and females. Despite similar pathological stroke lesions, the clinical manifestations of stroke were more pronounced in males than females, as indicated by the neurological scores and other tests. MSC treatment significantly improved the recovery of sensory and motor function in both sexes, and it demonstrated efficacy in both moderate stroke (females) and severe stroke (males).ConclusionsDespite sex differences in the severity of post stroke outcomes, MSC treatment promoted the recovery of sensory and motor function in male and female rats, suggesting that it may be a promising treatment for stroke.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ming Song ◽  
Fang Yuan ◽  
Xiaohong Li ◽  
Xipeng Ma ◽  
Xinmin Yin ◽  
...  

Abstract Background Inadequate copper intake and increased fructose consumption represent two important nutritional problems in the USA. Dietary copper-fructose interactions alter gut microbial activity and contribute to the development of nonalcoholic fatty liver disease (NAFLD). The aim of this study is to determine whether dietary copper-fructose interactions alter gut microbial activity in a sex-differential manner and whether sex differences in gut microbial activity are associated with sex differences in hepatic steatosis. Methods Male and female weanling Sprague-Dawley (SD) rats were fed ad libitum with an AIN-93G purified rodent diet with defined copper content for 8 weeks. The copper content is 6 mg/kg and 1.5 mg/kg in adequate copper diet (CuA) and marginal copper diet (CuM), respectively. Animals had free access to either deionized water or deionized water containing 10% fructose (F) (w/v) as the only drink during the experiment. Body weight, calorie intake, plasma alanine aminotransferase, aspartate aminotransferase, and liver histology as well as liver triglyceride were evaluated. Fecal microbial contents were analyzed by 16S ribosomal RNA (16S rRNA) sequencing. Fecal and cecal short-chain fatty acids (SCFAs) were determined by gas chromatography-mass spectrometry (GC-MS). Results Male and female rats exhibit similar trends of changes in the body weight gain and calorie intake in response to dietary copper and fructose, with a generally higher level in male rats. Several female rats in the CuAF group developed mild steatosis, while no obvious steatosis was observed in male rats fed with CuAF or CuMF diets. Fecal 16S rRNA sequencing analysis revealed distinct alterations of the gut microbiome in male and female rats. Linear discriminant analysis (LDA) effect size (LEfSe) identified sex-specific abundant taxa in different groups. Further, total SCFAs, as well as, butyrate were decreased in a more pronounced manner in female CuMF rats than in male rats. Of note, the decreased SCFAs are concomitant with the reduced SCFA producers, but not correlated to hepatic steatosis. Conclusions Our data demonstrated sex differences in the alterations of gut microbial abundance, activities, and hepatic steatosis in response to dietary copper-fructose interaction in rats. The correlation between sex differences in metabolic phenotypes and alterations of gut microbial activities remains elusive.


2019 ◽  
Vol 22 (11) ◽  
pp. 710-723 ◽  
Author(s):  
Atul P Daiwile ◽  
Subramaniam Jayanthi ◽  
Bruce Ladenheim ◽  
Michael T McCoy ◽  
Christie Brannock ◽  
...  

Abstract Background Methamphetamine (METH) use disorder is prevalent worldwide. There are reports of sex differences in quantities of drug used and relapses to drug use among individuals with METH use disorder. However, the molecular neurobiology of these potential sex differences remains unknown. Methods We trained rats to self-administer METH (0. 1 mg/kg/infusion, i.v.) on an fixed-ratio-1 schedule for 20 days using two 3-hour daily METH sessions separated by 30-minute breaks. At the end of self-administration training, rats underwent tests of cue-induced METH seeking on withdrawal days 3 and 30. Twenty-four hours later, nucleus accumbens was dissected and then used to measure neuropeptide mRNA levels. Results Behavioral results show that male rats increased the number of METH infusions earlier during self-administration training and took more METH than females. Both male and female rats could be further divided into 2 phenotypes labeled high and low takers based on the degree of escalation that they exhibited during the course of the METH self-administration experiment. Both males and females exhibited incubation of METH seeking after 30 days of forced withdrawal. Females had higher basal mRNA levels of dynorphin and hypocretin/orexin receptors than males, whereas males expressed higher vasopressin mRNA levels than females under saline and METH conditions. Unexpectedly, only males showed increased expression of nucleus accumbens dynorphin after METH self-administration. Moreover, there were significant correlations between nucleus accumbens Hcrtr1, Hcrtr2, Crhr2, and Avpr1b mRNA levels and cue-induced METH seeking only in female rats. Conclusion Our results identify some behavioral and molecular differences between male and female rats that had self-administered METH. Sexual dimorphism in responses to METH exposure should be considered when developing potential therapeutic agents against METH use disorder.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Stavrakis ◽  
K Elkholey ◽  
L Morris ◽  
Y Li ◽  
S S Po

Abstract Background Heart failure (HF) with preserved ejection fraction (HFpEF) accounts for 50% of HF and sudden death is the leading cause of mortality. There are considerable sex differences in cardiac structure and function, which may be related to outcomes in HFpEF. Transcutaneous vagus nerve stimulation (tVNS) is antiarrhythmic. Purpose To describe sex differences in mortality, autonomic tone and ECG parameters in rats with HFpEF and examine the effect of tVNS on these outcomes. Methods Dahl salt sensitive (DS) rats of either sex were randomized into high salt (HS, 8% NaCl) or low salt (LS) diet (0.3% NaCl) at 7 weeks of age. After 6 weeks of LS or HS diets, HS rats were randomized to receive active or sham tVNS, 30min daily (20Hz, 3mA) for 4 weeks. The rats were monitored daily for 4 weeks for the development of HFpEF. ECG and echocardiogram were performed at 13 weeks (baseline) and 17 weeks (endpoint). Heart rate variability (HRV) was calculated at the respective time points. ECG and HRV parameters were analyzed in a blinded fashion. Logistic regression analysis was performed to identify independent predictors of mortality. Results A total of 58 rats were included (5 male LS, 6 female LS, 22 male HS and 25 female HS). HS rats developed significant hypertension and signs of HFpEF, while 24% of females and 53% of males died (P=0.004). There were 4 sudden cardiac deaths in males (with ventricular tachycardia documented in 1 rat), whereas all the females died of HF or stroke. Corrected QT (QTc) at baseline significantly prolonged in HS compared to LS rats (250.5±14.4ms vs. 226.8±13.9ms, respectively, p=0.0007), while all other ECG parameters did not differ significantly between groups. In HS rats, QTc prolongation was significantly more pronounced in males compared to females (259.4±20.6ms vs. 243.8±14.5ms, respectively, P=0.002). In univariate analysis, prolonged baseline QTc (OR=1.04; 95% CI 1.01–1.06, p=0.003) and male sex (OR=3.21, 95% CI 1.19–8.66, p=0.016) predicted mortality. However, in multivariate analysis, QTc was the only significant predictor of mortality (OR=1.04; 95% CI 1.01–1.06, p=0.003). After 4 weeks of treatment, active tVNS significantly decreased QTc compared to sham (244.6±13.8ms vs. 255.8±14.0ms, respectively, p=0.017) in both male and female rats in a similar manner. The low frequency to high frequency ratio (LF/HF) of HRV, which reflects sympathovagal balance, was significantly decreased in active tVNS rats compared to sham (0.21±0.13 vs. 0.54±0.14, respectively; p=0.001) in both male and female rats in a similar manner. Conclusions Male rats with HFpEF exhibit worse survival compared to females and are at higher risk for sudden death. QTc prolongation accounts for the increased risk of sudden death in males compared to females. Autonomic modulation with tVNS attenuates the unfavorable changes in QTc and HRV induced by HS diet and may be used to prevent ventricular arrhythmias in patients with HFpEF.


1971 ◽  
Vol 49 (1) ◽  
pp. 71-79 ◽  
Author(s):  
R. L. Lyman ◽  
G. Sheehan ◽  
J. Tinoco

An experiment was conducted to see whether diet influenced the incorporation of 14CH3-methionine into liver phosphatidylcholines of male and female rats.Rats of both sexes were fed either a stock diet (Purina Chow), a semipurified diet containing 10% flaxseed oil, or a low methionine diet with or without choline. One hour before killing, 14CH3-methionine was injected into the animals. The distribution of the label in subfractions of liver phosphatidylcholines was then determined.Choline phosphatides of female rats fed chow or flaxseed oil diets had higher specific activities than did those of males. In chow-fed female rats the additional radioactivity appeared mainly in the tetraene phosphatidylcholine fraction. In female rats fed flaxseed oil, the extra label appeared in the tetraene as well as in a pentaene fraction.Therefore, changes in the degree of unsaturation of the species of phosphatidylcholine by dietary modification did not alter total incorporation of the label into liver phosphatidylcholines nor did it influence sex differences in the incorporation even though the distribution of the label within particular species of choline phosphatides was changed.No sex differences in incorporation were evident in the low methionine diet whether it contained choline or not. Choline deficiency did not affect total incorporation of the methyl group nor the proportions of phosphatidylcholine subfractions in the phospholipids, although in males it depressed the amount of hepatic phosphatidylcholine.


1968 ◽  
Vol 22 (2) ◽  
pp. 547-554 ◽  
Author(s):  
Jan W. Kakolewski ◽  
Verne C. Cox ◽  
Elliot S. Valenstein

Data are presented to demonstrate that the effects of gonadectomy on body weight and food consumption differ in male and female rats. The findings are related to the authors' report of sex differences in the effects of ventromedial hypothalamic damage. A review of the literature on the relationship of the gonads to body weight in different species is presented.


2015 ◽  
Vol 2 (11) ◽  
pp. 150485 ◽  
Author(s):  
Jolle Wolter Jolles ◽  
Neeltje J. Boogert ◽  
Ruud van den Bos

In many species, males tend to have lower parental investment than females and greater variance in their reproductive success. Males might therefore be expected to adopt more high-risk, high-return behaviours than females. Next to risk-taking behaviour itself, sexes might also differ in how they respond to information and learn new associations owing to the fundamental link of these cognitive processes with the risk–reward axis. Here we investigated sex differences in both risk-taking and learned responses to risk by measuring male and female rats’ ( Rattus norvegicus ) behaviour across three contexts in an open field test containing cover. We found that when the environment was novel, males spent more time out of cover than females. Males also hid less when exposed to the test arena containing predator odour. By contrast, females explored more than males when the predator odour was removed (associatively learned risk). These results suggest that males are more risk-prone but behave more in line with previous experiences, while females are more risk-averse and more responsive to changes in their current environment. Our results suggest that male and female rats differ in how they cope with risk and highlight that a general link may exist between risk-taking behaviour and learning style.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zahra Pezeshki ◽  
Mehdi Nematbakhsh

Background. The prevalence and severity of hypertension, as well as the activity of the systemic and local renin angiotensin systems (RASs), are gender related, with more symptoms in males than in females. However, the underlying mechanisms are not well understood. In this study, we investigated sex differences in renal vascular responses to angiotensin II (Ang II) administration with and without Ang II type 1 and Mas receptor (AT1R and MasR) antagonists (losartan and A779) in the 2K1C rat model of renovascular hypertension. Methods. Male and female 2K1C rats were divided into 8 experimental groups (4 of each sex) treated with vehicle, losartan, A779, or A779+losartan. Responses of mean arterial pressure (MAP), renal blood flow (RBF), and renal vascular resistance (RVR) to Ang II were determined. Results. In both sexes, the basal MAP, RBF, and RVR were not significantly different between the four groups during the control period. The Ang II administration decreased RBF and increased RVR in a dose-related manner in both sexes pretreated with vehicle or A779 ( P dose < 0.0001 ), but in vehicle pretreated groups, RBF and RVR responses were different between male and female rats ( P group < 0.05 ). AT1R blockade increased RBF and decreased RVR responses to Ang II, and no difference between the sexes was detected. Coblockades of AT1R and MasR receptors increased RBF response to Ang II significantly in males alone but not in females ( P group = 0.04 ). Conclusion. The impact of Ang II on RBF and RVR responses seems to be gender related with a greater effect on males, and this sex difference abolishes by Mas receptor blockade. However, the paradoxical role of dual losartan and A779 may provide the different receptor interaction in RAS between male and female rats.


2020 ◽  
Author(s):  
Herminio M Guajardo ◽  
Rita J Valentino

ABSTRACTStress-induced activation of locus coeruleus (LC)-norepinephrine (NE) projections to the prefrontal cortex is thought to promote cognitive responses to stressors. LC activation by stressors is modulated by endogenous opioids that serve to restrain LC activation and to facilitate a return to baseline activity upon stress termination. Sex differences in this opioid influence could be a basis for sex differences in stress vulnerability. Consistent with this, we recently demonstrated that μ-opioid receptor (MOR) expression is decreased in the female rat LC compared to the male LC and this was associated with sexually distinct consequences of activating MOR in the LC on cognitive flexibility. Given that the LC-NE system affects cognitive flexibility through its projections to the medial prefrontal cortex (mPFC), the present study quantified and compared the effects of LC-MOR activation on mPFC neural activity in male and female rats. Local field potential (LFPs) were recorded from the mPFC of freely behaving male and female rats before and following local LC microinjection of the MOR agonist, DAMGO or vehicle. Intra-LC DAMGO altered the LFP power spectrum selectively in male, but not female rats, resulting in a time-dependent increase in the power in delta and alpha frequency bands. LC microinfusion of ACSF had no effect in either sex. Together, the results are consistent with previous evidence for decreased MOR function in the female rat LC and demonstrate that this translates to a diminished effect on cortical activity that can account for sex differences in cognitive consequences. Decreased LC-MOR function in females could contribute to greater stress-induced activation of the LC, and increased vulnerability of females to hyperarousal symptoms of stress-related neuropsychiatric pathologies.


Sign in / Sign up

Export Citation Format

Share Document