Murine filaggrin-2 is involved in epithelial barrier function and down-regulated in metabolically induced skin barrier dysfunction

2012 ◽  
Vol 21 (4) ◽  
pp. 271-276 ◽  
Author(s):  
Britta Hansmann ◽  
Kerstin Ahrens ◽  
Zhihong Wu ◽  
Ehrhardt Proksch ◽  
Ulf Meyer-Hoffert ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aubrey N. Michi ◽  
Bryan G. Yipp ◽  
Antoine Dufour ◽  
Fernando Lopes ◽  
David Proud

AbstractHuman rhinoviruses (HRV) are common cold viruses associated with exacerbations of lower airways diseases. Although viral induced epithelial damage mediates inflammation, the molecular mechanisms responsible for airway epithelial damage and dysfunction remain undefined. Using experimental HRV infection studies in highly differentiated human bronchial epithelial cells grown at air-liquid interface (ALI), we examine the links between viral host defense, cellular metabolism, and epithelial barrier function. We observe that early HRV-C15 infection induces a transitory barrier-protective metabolic state characterized by glycolysis that ultimately becomes exhausted as the infection progresses and leads to cellular damage. Pharmacological promotion of glycolysis induces ROS-dependent upregulation of the mitochondrial metabolic regulator, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), thereby restoring epithelial barrier function, improving viral defense, and attenuating disease pathology. Therefore, PGC-1α regulates a metabolic pathway essential to host defense that can be therapeutically targeted to rescue airway epithelial barrier dysfunction and potentially prevent severe respiratory complications or secondary bacterial infections.


2013 ◽  
Vol 304 (5) ◽  
pp. G479-G489 ◽  
Author(s):  
Katherine R. Groschwitz ◽  
David Wu ◽  
Heather Osterfeld ◽  
Richard Ahrens ◽  
Simon P. Hogan

Mast cells regulate intestinal barrier function during disease and homeostasis. Secretion of the mast cell-specific serine protease chymase regulates homeostasis. In the present study, we employ in vitro model systems to delineate the molecular pathways involved in chymase-mediated intestinal epithelial barrier dysfunction. Chymase stimulation of intestinal epithelial (Caco-2 BBe) cell monolayers induced a significant reduction in transepithelial resistance, indicating decreased intestinal epithelial barrier function. The chymase-induced intestinal epithelial barrier dysfunction was characterized by chymase-induced protease-activated receptor (PAR)-2 activation and matrix metalloproteinase (MMP)-2 expression and activation. Consistent with this observation, in vitro analysis revealed chymase-induced PAR-2 activation and increased MAPK activity and MMP-2 expression. Pharmacological and small interfering RNA-mediated antagonism of PAR-2 and MMP-2 significantly attenuated chymase-stimulated barrier dysfunction. Additionally, the chymase/MMP-2-mediated intestinal epithelial dysfunction was associated with a significant reduction in the tight junction protein claudin-5, which was partially restored by MMP-2 inhibition. Finally, incubation of Caco-2 BBe cells with chymase-sufficient, but not chymase-deficient, bone marrow-derived mast cells decreased barrier function, which was attenuated by the chymase inhibitor chymostatin. Collectively, these results suggest that mast cell/chymase-mediated intestinal epithelial barrier function is mediated by PAR-2/MMP-2-dependent pathways.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Cuiping Ye ◽  
Chaowen Huang ◽  
Mengchen Zou ◽  
Yahui Hu ◽  
Lishan Luo ◽  
...  

Abstract Background The dysfunction of airway epithelial barrier is closely related to the pathogenesis of asthma. Secreted Hsp90α participates in inflammation and Hsp90 inhibitor protects endothelial dysfunction. In the current study, we aimed to explore the role of secreted Hsp90α in asthmatic airway epithelial barrier function. Methods Male BALB/c mice were sensitized and challenged with HDM to generate asthma model. The 16HBE and Hsp90α-knockdown cells were cultured and treated according to the experiment requirements. Transepithelial Electric Resistance (TEER) and permeability of epithelial layer in vitro, distribution and expression of junction proteins both in vivo and in vitro were used to evaluate the epithelial barrier function. Western Blot was used to evaluate the expression of junction proteins and phosphorylated AKT in cells and lung tissues while ELISA were used to evaluate the Hsp90α expression and cytokines release in the lung homogenate. Results HDM resulted in a dysfunction of airway epithelial barrier both in vivo and in vitro, paralleled with the increased expression and release of Hsp90α. All of which were rescued in Hsp90α-knockdown cells or co-administration of 1G6-D7. Furthermore, either 1G6-D7 or PI3K inhibitor LY294002 suppressed the significant phosphorylation of AKT, which caused by secreted and recombinant Hsp90α, resulting in the restoration of epithelial barrier function. Conclusions Secreted Hsp90α medicates HDM-induced asthmatic airway epithelial barrier dysfunction via PI3K/AKT pathway, indicating that anti-secreted Hsp90α therapy might be a potential treatment to asthma in future.


2019 ◽  
Vol 317 (2) ◽  
pp. G90-G97 ◽  
Author(s):  
Doug N. Halligan ◽  
Mohammed N. Khan ◽  
Eric Brown ◽  
Catherine R. Rowan ◽  
Ivan S. Coulter ◽  
...  

Inflammatory bowel disease (IBD) is characterized by epithelial barrier dysfunction with resultant inflammation as the mucosal immune system becomes exposed to luminal antigens. The hydroxylase inhibitor dimethyloxalylglycine (DMOG) reduces symptoms in experimental colitis through the upregulation of genes promoting barrier function and inhibition of epithelial cell apoptosis. The immunosuppressive drug cyclosporine reduces inflammation associated with IBD via suppression of immune cell activation. Given the distinct barrier protective effect of DMOG and the anti-inflammatory properties of cyclosporine, we hypothesized that combining these drugs may provide an enhanced protective effect by targeting both barrier dysfunction and inflammation simultaneously. We used the dextran sulfate sodium model of colitis in C57BL/6 mice to determine the combinatorial efficacy of cyclosporine and DMOG. While cyclosporine and DMOG ameliorated disease progression, in combination they had an additive protective effect that surpassed the level of protection afforded by either drug alone. The ability of DMOG to augment the anti-inflammatory effects of cyclosporine was largely due to preservation of barrier function and at least in part due to zonula occludens-1 regulation. We propose that combining the barrier protective effects of a hydroxylase inhibitor with the anti-inflammatory effects of cyclosporine provides added therapeutic benefit in colitis. NEW & NOTEWORTHY Inflammatory bowel disease is the result of decreased intestinal epithelial barrier function leading to exposure of the mucosal immune system to luminal antigens causing inflammation, which in turn further decreases epithelial barrier function. We demonstrate for the first time that strengthening the epithelial barrier with a hydroxylase inhibitor in combination with the administration of the immunosuppressive cyclosporine provides additive therapeutic advantage in a murine model of colitis


2007 ◽  
Vol 293 (3) ◽  
pp. G568-G576 ◽  
Author(s):  
Jie Chen ◽  
Jaladanki N. Rao ◽  
Tongtong Zou ◽  
Lan Liu ◽  
Bernard S. Marasa ◽  
...  

The Toll-like receptors (TLRs) allow mammalian intestinal epithelium to detect various microbes and activate innate immunity after infection. TLR2 and TLR4 have been identified in intestinal epithelial cells (IECs) as fundamental components of the innate immune response to bacterial pathogens, but the exact mechanism involved in control of TLR expression remains unclear. Polyamines are implicated in a wide variety of biological functions, and regulation of cellular polyamines is a central convergence point for the multiple signaling pathways driving different epithelial cell functions. The current study determined whether polyamines regulate TLR expression, thereby modulating intestinal epithelial barrier function. Depletion of cellular polyamines by inhibiting ornithine decarboxylase (ODC) with α-difluoromethylornithine decreased levels of TLR2 mRNA and protein, whereas increased polyamines by ectopic overexpression of the ODC gene enhanced TLR2 expression. Neither intervention changed basal levels of TLR4. Exposure of normal IECs to low-dose (5 μg/ml) LPS increased ODC enzyme activity and stimulated expression of TLR2 but not TLR4, while polyamine depletion prevented this LPS-induced TLR2 expression. Decreased TLR2 in polyamine-deficient cells was associated with epithelial barrier dysfunction. In contrast, increased TLR2 by the low dose of LPS enhanced epithelial barrier function, which was abolished by inhibition of TLR2 expression with specific, small interfering RNA. These results indicate that polyamines are necessary for TLR2 expression and that polyamine-induced TLR2 activation plays an important role in regulating epithelial barrier function.


2021 ◽  
Author(s):  
Yun Ji ◽  
Shuting Fang ◽  
Ying Yang ◽  
Zhenlong Wu

Abstract Background Nephrolithiasis (also known as renal stones) is a common disease condition in companion animals, including dogs and cats. Dysfunction of renal tubular epithelial cells involves in the pathogenesis of renal stones. However, a functional role of Wnt/β-catenin signaling and its contribution to nephrolithiasis remains unknown. Results In the present study, we found that Mardin-Darby canine kidney (MDCK) cells treated with sodium oxalate resulted in reduced cell proliferation and migration, which was associated with the G0/G1 phase arrest of cell cycle progression. In addition, sodium oxalate exposure led to decreased transepithelial electrical resistance (TEER) and increased paracellular permeability. The deleterious effect of sodium oxalate on epithelial barrier function was related to decreased protein abundances of claudin-1, occludin, zonula occludens (ZO)-1, ZO-2 and ZO-3. Of note, protein levels of p-β-catenin (Ser552) in MDCK cells were repressed by sodium oxalate, indicating an inhibitory effect on the Wnt/β-catenin signaling. Intriguingly, SB216763, a GSK-3β inhibitor, enhanced the expression p-β-catenin (Ser552), and protected against epithelial barrier dysfunction in sodium oxalate-treated MDCK cells. Conclusion Taken together, our results revealed a critical role of Wnt/β-catenin signaling on the epithelial barrier function of MDCK cells. Activation of Wnt/β-catenin signaling might be an potentially therapeutic target for the treatment of renal stones in animals.


2017 ◽  
Vol 41 (5) ◽  
pp. 1924-1934 ◽  
Author(s):  
Akihiro Watari ◽  
Yuta Sakamoto ◽  
Kota Hisaie ◽  
Kazuki Iwamoto ◽  
Miho Fueta ◽  
...  

Background/Aims: Although proinflammatory cytokine–induced disruption of intestinal epithelial barrier integrity is associated with intestinal inflammatory disease, effective treatment for barrier dysfunction is lacking. Previously, we demonstrated that rebeccamycin alleviates epithelial barrier dysfunction induced by inflammatory cytokines in Caco-2 cell monolayers; however, the underlying mechanism remained unclear. Here, we investigated the mechanism by which rebeccamycin protects the epithelial barrier function of Caco-2 cells exposed to TNF-α. Methods: To confirm the epithelial barrier function of Caco-2 cell monolayers, transepithelial electrical resistance (TER) and paracellular permeability were measured. Production levels and localization of tight junction (TJ) proteins were analyzed by immunoblot and immunofluorescence, respectively. Phosphorylated myosin light chain (pMLC) and MLC kinase (MLCK) mRNA expression levels were determined by immunoblot and quantitative RT-PCR, respectively. Results: Rebeccamycin attenuated the TNF-α-induced reduction in TER and increase in paracellular permeability. Rebeccamycin increased claudin-5 expression, but not claudin-1, -2, -4, occludin or ZO-1 expression, and prevented the TNF-α-induced changes in ZO-1 and occludin localization. Rebeccamycin suppressed the TNF-α-induced increase in MLCK mRNA expression, thus suppressing MLC phosphorylation. The rebeccamycin-mediated reduction in MLCK production and protection of epithelial barrier function were alleviated by Chk1 inhibition. Conclusion: Rebeccamycin attenuates TNF-α-induced disruption of intestinal epithelial barrier integrity by inducing claudin-5 expression and suppressing MLCK production via Chk1 activation.


2013 ◽  
Vol 91 (6) ◽  
pp. 449-454 ◽  
Author(s):  
Yu-Wei Liao ◽  
Xing-Mao Wu ◽  
Jia Jia ◽  
Xiao-Lei Wu ◽  
Hong Tao ◽  
...  

The airway epithelial barrier function is important in maintaining the homeostasis in the body. A number of airway disorders are associated with the epithelial barrier dysfunction. The present study aims to elucidate a possible mechanism by which the proteolytic allergens compromise the epithelial barrier function. The airway epithelial cell line, RPMI 2650 cells (Rp cells) and kidney epithelial cell line, MDCK cells, were cultured to be monolayers and used as an in vitro epithelial barrier model. House dust mite antigen, Der P1 (Der) was used as an antigen that has the proteolytic property. The epithelial barrier permeability and transepithelial resistance (TER) were used as the indicators of epithelial barrier function. Both epithelial cell lines could endocytose Der in the culture. Some of the Der was transported across the epithelial barrier to the basal chambers of the Transwells without affecting the TER. The endocytic Der could suppress the expression of ubiquitin E3 lases A20 and further interfered with the fusion of endosome/lysosome in the epithelial cells. Mite antigen, Der, can interfere with the fusion of endosome/lysosome in epithelial cells to induce the epithelial barrier dysfunction.


Author(s):  
Yun Ji ◽  
Shuting Fang ◽  
Ying Yang ◽  
Zhenlong Wu

Abstract High oxalate consumption has been recognized as a risk factor for renal calcium oxalate stones in companion animals (dogs and cats). However, the cellular signaling involved in oxalate-induced dysfunction in renal tubular epithelial cells remains not fully elucidated. In this study, Mardin-Darby canine kidney (MDCK) cells, an epithelial cell line derived from canine kidney tubule, were tested for cell proliferation activity and barrier function after being exposed to sodium oxalate (NaOx). Further, the involvement of Wnt/β-catenin in NaOx-induced renal epithelial barrier dysfunction was evaluated. MDCK cells treated with NaOx exhibited reduction in cell proliferation and migration. Besides, NaOx exposure led to a decrease in transepithelial electrical resistance (TEER) and an increase in paracellular permeability. The deleterious effects of NaOx on epithelial barrier function were related to the suppressed abundance of tight junction proteins including zonula occludens (ZOs), occludin, and claudin-1. Of note, protein levels of β-catenin and p-β-catenin (Ser552) in MDCK cells were repressed by NaOx, indicating inhibitory effects on Wnt/β-catenin signaling. An inhibition of GSK-3β enhanced the abundance of β-catenin and p-β-catenin (Ser552), and protected against epithelial barrier dysfunction in NaOx-treated MDCK cells. The results revealed a critical role of Wnt/β-catenin signaling in the epithelial barrier function of MDCK cells. Activation of Wnt/β-catenin signaling might be a potentially therapeutic target for the treatment of oxalate-linked renal stones.


2015 ◽  
Vol 308 (12) ◽  
pp. L1212-L1223 ◽  
Author(s):  
Christian E. Overgaard ◽  
Barbara Schlingmann ◽  
StevenClaude Dorsainvil White ◽  
Christina Ward ◽  
Xian Fan ◽  
...  

Lung barrier dysfunction is a cardinal feature of the acute respiratory distress syndrome (ARDS). Alcohol abuse, which increases the risk of ARDS two- to fourfold, induces transforming growth factor (TGF)-β1, which increases epithelial permeability and impairs granulocyte/macrophage colony-stimulating factor (GM-CSF)-dependent barrier integrity in experimental models. We hypothesized that the relative balance of GM-CSF and TGF-β1 signaling regulates lung epithelial barrier function. GM-CSF and TGF-β1 were tested separately and simultaneously for their effects on lung epithelial cell barrier function in vitro. TGF-β1 alone caused an ∼25% decrease in transepithelial resistance (TER), increased paracellular flux, and was associated with projections perpendicular to tight junctions (“spikes”) containing claudin-18 that colocalized with F-actin. In contrast, GM-CSF treatment induced an ∼20% increase in TER, decreased paracellular flux, and showed decreased colocalization of spike-associated claudin-18 with F-actin. When simultaneously administered to lung epithelial cells, GM-CSF antagonized the effects of TGF-β1 on epithelial barrier function in cultured cells. Given this, GM-CSF and TGF-β1 levels were measured in bronchoalveolar lavage (BAL) fluid from patients with ventilator-associated pneumonia and correlated with markers for pulmonary edema and patient outcome. In patient BAL fluid, protein markers of lung barrier dysfunction, serum α2-macroglobulin, and IgM levels were increased at lower ratios of GM-CSF/TGF-β1. Critically, patients who survived had significantly higher GM-CSF/TGF-β1 ratios than nonsurviving patients. This study provides experimental and clinical evidence that the relative balance between GM-CSF and TGF-β1 signaling is a key regulator of lung epithelial barrier function. The GM-CSF/TGF-β1 ratio in BAL fluid may provide a concentration-independent biomarker that can predict patient outcomes in ARDS.


Sign in / Sign up

Export Citation Format

Share Document