Maize Genotypes Differing in Salt Resistance Vary in Jasmonic Acid Accumulation During the First Phase of Salt Stress

2015 ◽  
Vol 201 (6) ◽  
pp. 443-451 ◽  
Author(s):  
A. N. Shahzad ◽  
B. Pitann ◽  
H. Ali ◽  
M. F. Qayyum ◽  
A. Fatima ◽  
...  
2017 ◽  
Vol 2 (4) ◽  
pp. 562-566
Author(s):  
Mahrufa Khanoom ◽  
Shawon Mojumder ◽  
Md Nesar Uddin ◽  
Md Ashrafuzzaman ◽  
Md Solaiman Ali Fakir

An experiment was carried out in the pot-house of botanical garden of Bangladesh Agricultural University (BAU), Mymensingh, during June to November, 2014 to investigate the effect of NaCl on growth, Na+ accumulation and K+: Na+ ratio in maize. Four maize genotypes namely BARI Maize 5, BARI Maize 7, Plain maize line and Mosaic maize line were tested against control, without providing any NaCl and salt stress, with NaCl to reach the soil salinity of 10 dS m-1. The experiment was laid out following CRD with four replicates. Under salt stress, relative reduction in shoot fresh masses were 22 and 77% in BARI Maize 5 and BARI Maize 7, whereas the magnitude of reduction was 136 and 155% in Mosaic maize line and Plain maize line, respectively. Seven days exposure to moderate salinity (10 dS m-1) seemed to have significantly reduced total fresh masses with the concomitant increase in Na+ concentrations but decrease in K+ concentrations and K+: Na+ ratios in both young and old shoots of BARI Maize 5, Plain maize line and Mosaic maize line. In contrast, BARI Maize 7 showed significant reduction in shoot fresh mass under salinity with the concomitant increase in shoot Na+ content but no significant changes in K+ concentrations and K+: Na+ ratios were observed under salinity. It seemed that young leaf of BARI maize 7 showed unaffected growth despite of higher accumulation of Na+. It may likely that BARI maize 7 sequestered incoming excess Na+ ions in the vacuole from the cytosol to combat deleterious effect of this ion to the cytoplasmic enzymes.Asian J. Med. Biol. Res. December 2016, 2(4): 562-566


2007 ◽  
Vol 27 (22) ◽  
pp. 7771-7780 ◽  
Author(s):  
Paul E. Verslues ◽  
Giorgia Batelli ◽  
Stefania Grillo ◽  
Fernanda Agius ◽  
Yong-Sig Kim ◽  
...  

ABSTRACT SOS2, a class 3 sucrose-nonfermenting 1-related kinase, has emerged as an important mediator of salt stress response and stress signaling through its interactions with proteins involved in membrane transport and in regulation of stress responses. We have identified additional SOS2-interacting proteins that suggest a connection between SOS2 and reactive oxygen signaling. SOS2 was found to interact with the H2O2 signaling protein nucleoside diphosphate kinase 2 (NDPK2) and to inhibit its autophosphorylation activity. A sos2-2 ndpk2 double mutant was more salt sensitive than a sos2-2 single mutant, suggesting that NDPK2 and H2O2 are involved in salt resistance. However, the double mutant did not hyperaccumulate H2O2 in response to salt stress, suggesting that it is altered signaling rather than H2O2 toxicity alone that is responsible for the increased salt sensitivity of the sos2-2 ndpk2 double mutant. SOS2 was also found to interact with catalase 2 (CAT2) and CAT3, further connecting SOS2 to H2O2 metabolism and signaling. The interaction of SOS2 with both NDPK2 and CATs reveals a point of cross talk between salt stress response and other signaling factors including H2O2.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hao Wang ◽  
Tingting An ◽  
Di Huang ◽  
Runjin Liu ◽  
Bingcheng Xu ◽  
...  

Abstract Background Inoculation of arbuscular mycorrhizal (AM) fungi has the potential to alleviate salt stress in host plants through the mitigation of ionic imbalance. However, inoculation effects vary, and the underlying mechanisms remain unclear. Two maize genotypes (JD52, salt-tolerant with large root system, and FSY1, salt-sensitive with small root system) inoculated with or without AM fungus Funneliformis mosseae were grown in pots containing soil amended with 0 or 100 mM NaCl (incrementally added 32 days after sowing, DAS) in a greenhouse. Plants were assessed 59 DAS for plant growth, tissue Na+ and K+ contents, the expression of plant transporter genes responsible for Na+ and/or K+ uptake, translocation or compartmentation, and chloroplast ultrastructure alterations. Results Under 100 mM NaCl, AM plants of both genotypes grew better with denser root systems than non-AM plants. Relative to non-AM plants, the accumulation of Na+ and K+ was decreased in AM plant shoots but increased in AM roots with a decrease in the shoot: root Na+ ratio particularly in FSY1, accompanied by differential regulation of ion transporter genes (i.e., ZmSOS1, ZmHKT1, and ZmNHX). This induced a relatively higher Na+ efflux (recirculating) rate than K+ in AM shoots while the converse outcoming (higher Na+ influx rate than K+) in AM roots. The higher K+: Na+ ratio in AM shoots contributed to the maintenance of structural and functional integrity of chloroplasts in mesophyll cells. Conclusion AM symbiosis improved maize salt tolerance by accelerating Na+ shoot-to-root translocation rate and mediating Na+/K+ distribution between shoots and roots.


Author(s):  
Yu. Khoma ◽  
L. Khudolieieva ◽  
N. Kutsokon

Soil salinization is an important abiotic factor negatively affecting plant growth, development and productivity. Fast-growing poplar and willow trees are important plants for bioenergy production demonstrating varying degrees of adaptation to different habitats. The study of salt resistance in different clones of poplars and willows will reveal genotypes that can be planted in saline soils for producing biomass for the bioenergy industry. Therefore, the aim of the study was to investigate the effects of salt stress on poplar plants of clone 'INRA 353-38' (Populus tremula × P. tremuloides) and willow clone 'Zhytomyrska – 1' (Salix sp.) under in vitro culture. For this purpose the plants were cultivated on MS nutrient medium with the addition of sodium chloride in concentrations 25 mM, 50 mM and 100 mM. The control plants were grown on the sodium chloridefree medium. The plant status (with a 4-score scale), the intensity of their growth (by shoot length) and rooting capacity (by the number of roots) were assessed on the 10th and the 30th day of cultivation. The results obtained indicate a high level of sensitivity to sodium chloride of both studied clones under in vitro cultivation. But the willow 'Zhytomyrska – 1' had a higher sensitivity to salt stress comparing to hybrid polar 'ІNRA 353-38' since growth parameters of willow were significantly decreased even under the concentration of sodium chloride 50 mM, and in the case of short term influence (10 days) of the highest concentration of sodium chloride (100 mM) all willow plants terminated their growth and quickly died. The growth parameters of hybrid poplar were declined within a month, mainly under the highest concentration of sodium chloride, but even under such conditions some part of the shoots were able to survive.


2005 ◽  
Vol 43 (6) ◽  
pp. 603-609 ◽  
Author(s):  
M.M. Afitlhile ◽  
H. Fukushige ◽  
M. Nishimura ◽  
D.F. Hildebrand

2020 ◽  
Vol 66 (2) ◽  
pp. 144-160 ◽  
Author(s):  
Shahnaz Sultana ◽  
Sumonta C. Paul ◽  
Samia Parveen ◽  
Saiful Alam ◽  
Naziza Rahman ◽  
...  

Growth and productivity of rice are negatively affected by soil salinity. However, some salt-tolerant rhizosphere-inhabiting bacteria can improve salt resistance of plants, thereby augmenting plant growth and production. Here, we isolated a total of 53 plant-growth-promoting rhizobacteria (PGPR) from saline and non-saline areas in Bangladesh where electrical conductivity was measured as >7.45 and <1.80 dS/m, respectively. Bacteria isolated from saline areas were able to grow in a salt concentration of up to 2.60 mol/L, contrary to the isolates collected from non-saline areas that did not survive beyond 854 mmol/L. Among the salt-tolerant isolates, Bacillus aryabhattai, Achromobacter denitrificans, and Ochrobactrum intermedium, identified by comparing respective sequences of 16S rRNA using the NCBI GenBank, exhibited a higher amount of atmospheric nitrogen fixation, phosphate solubilization, and indoleacetic acid production at 200 mmol/L salt stress. Salt-tolerant isolates exhibited greater resistance to heavy metals and antibiotics, which could be due to the production of an exopolysaccharide layer outside the cell surface. Oryza sativa L. fertilized with B. aryabhattai MS3 and grown under 200 mmol/L salt stress was found to be favoured by enhanced expression of a set of at least four salt-responsive plant genes: BZ8, SOS1, GIG, and NHX1. Fertilization of rice with osmoprotectant-producing PGPR, therefore, could be a climate-change-preparedness strategy for coastal agriculture.


Sign in / Sign up

Export Citation Format

Share Document