scholarly journals Influence of salt stress on plants of poplar clone "INRA 353-38" and willow clone "Zhytomyrska-1" in in vitro culture

Author(s):  
Yu. Khoma ◽  
L. Khudolieieva ◽  
N. Kutsokon

Soil salinization is an important abiotic factor negatively affecting plant growth, development and productivity. Fast-growing poplar and willow trees are important plants for bioenergy production demonstrating varying degrees of adaptation to different habitats. The study of salt resistance in different clones of poplars and willows will reveal genotypes that can be planted in saline soils for producing biomass for the bioenergy industry. Therefore, the aim of the study was to investigate the effects of salt stress on poplar plants of clone 'INRA 353-38' (Populus tremula × P. tremuloides) and willow clone 'Zhytomyrska – 1' (Salix sp.) under in vitro culture. For this purpose the plants were cultivated on MS nutrient medium with the addition of sodium chloride in concentrations 25 mM, 50 mM and 100 mM. The control plants were grown on the sodium chloridefree medium. The plant status (with a 4-score scale), the intensity of their growth (by shoot length) and rooting capacity (by the number of roots) were assessed on the 10th and the 30th day of cultivation. The results obtained indicate a high level of sensitivity to sodium chloride of both studied clones under in vitro cultivation. But the willow 'Zhytomyrska – 1' had a higher sensitivity to salt stress comparing to hybrid polar 'ІNRA 353-38' since growth parameters of willow were significantly decreased even under the concentration of sodium chloride 50 mM, and in the case of short term influence (10 days) of the highest concentration of sodium chloride (100 mM) all willow plants terminated their growth and quickly died. The growth parameters of hybrid poplar were declined within a month, mainly under the highest concentration of sodium chloride, but even under such conditions some part of the shoots were able to survive.

2012 ◽  
pp. 477-484
Author(s):  
A. Maamouri ◽  
Y. Trifa ◽  
K. Kouki ◽  
K. Aounallah ◽  
C. Karmous
Keyword(s):  

2003 ◽  
Vol 26 (5) ◽  
pp. 985-996 ◽  
Author(s):  
Safwan M. Shiyab ◽  
Rida A. Shibli ◽  
Munir M. Mohammad

2021 ◽  
Vol 209 (06) ◽  
pp. 43-52
Author(s):  
Marina Markova ◽  
Elena Somova

Abstract. The aim of these studies was to introduce into the in vitro culture the steppe cherry (Cerasus fruticosa) variety Shchedraya and the domestic plum (Prunus domestica) variety Sineokaya for subsequent micropropagation. Methods. Optimal conditions for obtaining viable explants, such as sterilizing agent and initiation time, have been investigated. The suitability of various nutrient media for in vitro cultivation of these cultures has also been tested. As a result of the experiments, it was revealed that the most effective sterilizing agents were 38 % perhydrol (control) and 6% chlorhexidine: the yield of viable cherry explants was 63.8 % and 61.5 %, plums – 69.8 % and 66.6 %, respectively. The optimal time for the initiation of cherry explants in vitro was January, where the yield of viable explants averaged 53.9 %, in June – 49.1 %, and for plums the initiation time did not matter – the yield of explants was 55.8 % in winter and 53.1 % in summer. In vitro cultivation of cherries and plums on the Quoirin – Lepoivre nutrient medium provided a significantly high multiplication factor, which averaged 4.1 for cherries (2.7 in control) and 6.0 for plums (3.9 in control). On the same medium, the maximum multiplication factor was obtained, which was 6.2 for cherries and 8.2 for plums. Thus, the scientific novelty of these studies is that the optimal conditions (sterilizing agent, time, nutrient medium) have been selected for the regeneration of cherry and plum explants in vitro with their subsequent micropropagation.


Author(s):  
Eliane Kinsou ◽  
Armel Mensah ◽  
David K. Montcho Hambada ◽  
Séraphin Ahissou Zanklan ◽  
Agapit Wouyou ◽  
...  

In this study, we evaluated the salt resistance level of seven tomato cultivars Akikon, Tounvi, Thorgal, F1 Mongal, Padma, Petomech and TLCV15 at young plant stage. The experiment was laid out as a Randomized Complete Design (RCD) with four replications in a greenhouse. Three-week old plants from the seven cultivars were submitted in pots containing a mixture of potting soil and sand to five NaCl concentrations: 0; 30; 60; 90 and 120 mM NaCl corresponding respectively to an electric conductivity of 0.221; 3.827; 6.47; 10.56 and 14.02 dS.m-1 by irrigation every two days. Plant growth parameters were evaluated after two weeks. Salt effect caused a reduction of young plant growth whatever the growth parameter considered with a significant difference among cultivars. Growth of cultivars Padma, Akikon and Petomech was more affected by salt stress with two or three growth parameters significantly reduced at 30 mM NaCl whereas no growth parameter was significantly affected at less than 60 mM NaCl for cultivars Thorgal and Tounvi. Thus, cultivars Akikon, Petomech and Padma appeared as the most sensitive to salt stress. In contrast, cultivars Tounvi and Thorgal appeared as the most salt-resistant. Cultivars F1 Mongal and TLCV15 had intermediary behavior.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhixin Chen ◽  
Xueqi Zhao ◽  
Zenghui Hu ◽  
Pingsheng Leng

AbstractSoil salinization is one of the main stress factors that affect both growth and development of plants. Hylotelephium erythrostictum exhibits strong resistance to salt, but the underlying genetic mechanisms remain unclear. In this study, hydroponically cultured seedlings of H. erythrostictum were exposed to 200 mM NaCl. RNA-Seq was used to determine root transcriptomes at 0, 5, and 10 days, and potential candidate genes with differential expression were analyzed. Transcriptome sequencing generated 89.413 Gb of raw data, which were assembled into 111,341 unigenes, 82,081 of which were annotated. Differentially expressed genes associated to Na+ and K+ transport, Ca2+ channel, calcium binding protein, and nitric oxide (NO) biosynthesis had high expression levels in response to salt stress. An increased fluorescence intensity of NO indicated that it played an important role in the regulation of the cytosolic K+/Na+ balance in response to salt stress. Exogenous NO donor and NO biosynthesis inhibitors significantly increased and decreased the Na+ efflux, respectively, thus causing the opposite effect for K+ efflux. Moreover, under salt stress, exogenous NO donors and NO biosynthesis inhibitors enhanced and reduced Ca2+ influx, respectively. Combined with Ca2+ reagent regulation of Na+ and K+ fluxes, this study identifies how NaCl-induced NO may function as a signaling messenger that modulates the K+/Na+ balance in the cytoplasm via the Ca2+ signaling pathway. This enhances the salt resistance in H. erythrostictum roots.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5958 ◽  
Author(s):  
Jacek Patykowski ◽  
Jeremi Kołodziejek ◽  
Mateusz Wala

The present research investigated the response of silver maple (Acer saccharinumL.) to salt treatment. The short- and long-term effects of NaCl and CaCl2treatments on plant fitness characteristics (growth parameters, leaf chlorophyll content) and biochemical stress-coping mechanisms (proline accumulation as well as enzymatic activities) were examined. We found that the silver maple response to salt stress strictly depended on salt type and dose—calcium chloride was less toxic than sodium chloride, but high concentrations of both salts negatively influenced plant growth. The accumulation of proline, slight changes in the activity of superoxide dismutase and marked changes in catalase and peroxidase activities in the roots and leaves indicated complexity of the plant response. It was also shown that after one year, enzymatic parameters were restabilized, which indicates plant recovery, but the reduced mass of seedlings suggests that one year is not enough to cope with the prolonged cyclic salt stress, both resulting from NaCl and CaCl2application. Therefore, seedlings of silver maple should be considered as moderately susceptible to salinity. Hence, it is recommended to use silver maple on non-de-iced urban areas, while planting on often de-iced roads should be avoided.


Author(s):  
Eliška Kadlecová ◽  
Miroslav Baránek ◽  
Samuel Magnús ◽  
Filip Gazdík

Even though silicon is frequent compound in soil, its use in plant nutrient media is rare. Based on known physiological role and up to now performed studies it seems that silicon has a good potential to improve growth characteristics of in vitro cultivated plants. Before practical application, however, it is always necessary to assess the optimal conditions of application with regard to the fact that plant reactions to different chemicals added to nutritional media can vary on the species or even cultivar level. The presented study evaluate effects of potassium silicate used in in vitro cultivation media on growth parameters of Prunus persica × Prunus davidiana ‘Cadaman,‘ Prunus × amygdalopersica ‘GF 677‘ and Corylus avellana ‘Tonda di Giffoni‘ genotypes, which are frequently subject of commercial in vitro multiplication. In fact, four different concentrations of potassium silicate was added to the multiplication media, control medium was left silicon-free. Three different characteristics were observed during cultivation – number of new shoots per explant, weight of a new plant and length of new shoots, from which number of new shoots per explant was considered the most important factor. In all cases a positive effects of potassium silicate on the condition and other growth parameters of treated cultures were observed. In ‘Cadaman‘ culture significant growth changes appeared on media with 20 mg.l-1 potassium silicate, which can be recommended for future applications. For ‘GF 677‘ the best results were obtained on media with 2 mg.l-1 which can be recommended for improving condition and number of shoots on new plants. For hazelnut genotype ‘Tonda di Giffoni‘ best results were obtained on media with 10 mg.l-1 of potassium silicate, but also use of 5 mg.l-1 of potassium silicate significantly improved growth parameters. Generally, presented study provides important and practically useful insights into the practical use of silicon in cultivation media designated for commercial in vitro micropropagation.


1994 ◽  
Vol 119 (4) ◽  
pp. 865-871 ◽  
Author(s):  
Antonio Figueira ◽  
Jules Janick

In vitro culture of axillary cotyledonary shoots of Theobroma cacao L. (cacao) under increasing CO2 concentration from ambient to 24,000 ppm (culture tube levels) significantly increased total shoot elongation, number of leaves, leaf area per explant, and shoot dry and fresh weight. Although light was necessary for the CO2 response, the effect of various photon fluxes was not significant for the measured growth parameters. Net photosynthesis estimated on the basis of CO2 depletion in culture tubes increased 3.5 times from 463 to 2639 ppm CO2, and increased 1.5 times from 2639 to 14,849 ppm CO2, but declined from 14,849 to 24,015 ppm CO2. Ethylene concentration in culture vessels increased under enriched CO2 conditions. Depletion of nutrients (fructose, K, Ca, Mg, and P) from the medium was increased under enriched CO2 conditions.


2018 ◽  
Vol 22 ◽  
pp. 257-261 ◽  
Author(s):  
S. I. Kovtun ◽  
A. B. Zyuzyun ◽  
O. V. Shcherbak ◽  
P. A. Trotskiy

Aim. Investigated effect nanomaterial of highly dispersed ultra fine silica (UFS) by carbohydrate – sucrose (UFS/sucrose) on the effectiveness of meiotic maturation cows oocytes in vitro. Methods. The fresh and frozen – thawed cow oocyte-cumulus complex (OCC) was divided into four groups: three experimental in which the cultivation was carried out in a medium containing of 0, 1; 0, 01 and 0,001 % UFS/sucrose and control without adding nanomaterial. Results. It was concluded that the addition of UFS/sucrose in 0.001 % concentration is effective for elevation level of oocytes maturation and provides reception of 76,8% oocytes that induced the metaphase II of meiosis. Adding carbohydrate – sucrose (UFS/sucrose) in 0.001 % concentration to the culture medium frozen – thawed cow generative cells, make positive effect on in vitro fertilization and provide embryos quantity enhancement to 33.3 %. Conclusions. Addition of UFS/sucrose in 0.001 % concentration to the culture medium have increase effect and promote level in vitro maturation of cows oocytes rising to 76.8 %. Usage of UFS/sucrose in 0.001 % concentration as part of in vitro culture medium for cows oocyte-cumulus complex conduce rising quantity of cattle embryos to 33.3 % after in vitro fecundation frozen – thawed and maturation oocytes. Keywords: oocytes, in vitro culture, embryos, nanomaterial, ultra fine silica (UFS).


Sign in / Sign up

Export Citation Format

Share Document