Evaluation of Zn substituted–La 0.5 Sr 0.5 CoO 3 ceramics as functional materials for thick–film resistors

Author(s):  
Yongcheng Lu ◽  
Rui Peng ◽  
Yuanxun Li ◽  
Fuyu Li ◽  
Yuanjing Zhang ◽  
...  
Author(s):  
X Zeng ◽  
Z Cai ◽  
X Li

In this article, a laser direct-write method to fabricate conductive lines and electronic components on insulating boards by using laser microcladding electronic materials is reported. A workstation for implementing this direct-write method was developed, which integrated material deposition (micropen) and laser processing on a single machine. With the computer-aided design/computer-aided manufacturing (CAD/CAM) capability of the workstation, conductive lines, resistors, capacitors, inductors, and thick-film sensors with different patterns were fabricated successfully by this technique in air without mask and with high deposition rates. The minimum widths of the conductive lines and other functional materials were much less than those obtained by the conventional screen printing method. The experimental results demonstrated that passive components and thick-film sensors made by this method have the same properties as those made by conventional thick-film methods, whereas thick films fabricated by this method have much lower widths than those fabricated by the conventional thick-film method. This technique provides a novel method to fabricate the conductive lines and electronic components with high precision and high speed.


2014 ◽  
Vol 605 ◽  
pp. 215-218
Author(s):  
Ibrahim Gaidan

This work deals with the new technique employed in the fabrication of thick film which includes material selection, functional materials, milling / drying / pressing, firing and cooling, binder / solvent, substrate preparation, pastes preparation, the screen printing process and drying the sensing layers. A novel approach to electronic nose-head design, using a copper thin film electrode patterning technique was used to deposit electrodes on the alumina substrate. The responses of the sensors to propanol was investigated. The response / recovery times of all the sensors were improved compared to those deposited on glass substrates. For example, the response time for all the NiO / Fe2O3devices at 4000 ppm was less than 10 sec., while the recovery time were 30 sec for both the 75 / 25 and the 50 / 50 mol. % NiO / Fe2O3sensors and 20 sec for the 75 / 25 % NiO / Fe2O3sensor. The response / recovery times of those sensors fabricated on glass substrates were 30 / 45, 45 / 55 and 60 / 85 at the same solvent vapour and concentration.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Author(s):  
Yoichi Ishida ◽  
Hideki Ichinose ◽  
Yutaka Takahashi ◽  
Jin-yeh Wang

Layered materials draw attention in recent years in response to the world-wide drive to discover new functional materials. High-Tc superconducting oxide is one example. Internal interfaces in such layered materials differ significantly from those of cubic metals. They are often parallel to the layer of the neighboring crystals in sintered samples(layer plane boundary), while periodically ordered interfaces with the two neighboring crystals in mirror symmetry to each other are relatively rare. Consequently, the atomistic features of the interface differ significantly from those of cubic metals. In this paper grain boundaries in sintered high-Tc superconducting oxides, joined interfaces between engineering ceramics with metals, and polytype interfaces in vapor-deposited bicrystal are examined to collect atomic information of the interfaces in layered materials. The analysis proved that they are not neccessarily more complicated than that of simple grain boundaries in cubic metals. The interfaces are majorly layer plane type which is parallel to the compound layer. Secondly, chemical information is often available, which helps the interpretation of the interface atomic structure.


2020 ◽  
Vol 11 (48) ◽  
pp. 7603-7624
Author(s):  
Ismail Altinbasak ◽  
Mehmet Arslan ◽  
Rana Sanyal ◽  
Amitav Sanyal

This review provides an overview of synthetic approaches utilized to incorporate the thiol-reactive pyridyl-disulfide motif into various polymeric materials, and briefly highlights its utilization to obtain functional materials.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
SH Kim ◽  
MJ Lee ◽  
J Han ◽  
CE Lee

2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.


2020 ◽  
Vol 4 (1) ◽  
pp. 17-29
Author(s):  
Isma Attique ◽  
Shabbir Hussain ◽  
Muhammad Amjad ◽  
Khalida Nazir ◽  
Muhammad Shahid Nazir

Fluorine has a useful positron transmitting isotope and it enjoys broad application in the medical field. It is utilized in fluorinated agents,therapeutic sciences and steroid field. Fluorine incorporation viafluoroalkylation is a useful approach in the development of new functional materials and in drug design. Fluorine also plays its role as an anticancer agent and is a successful chemotherapeutic agent for certain sorts of malignant growth. 5-fluorouracil plays a vital role in the treatment of cancer. 18 Facts as a radio label tracer atom in PET imaging. 19 F has the second most sensitive and stable NMR-active nucleus.


Sign in / Sign up

Export Citation Format

Share Document