scholarly journals RIOK2 is negatively regulated by miR‐4744 and promotes glioma cell migration/invasion through epithelial‐mesenchymal transition

2020 ◽  
Vol 24 (8) ◽  
pp. 4494-4509 ◽  
Author(s):  
Yunnong Song ◽  
Cheng Li ◽  
Lei Jin ◽  
Jingsong Xing ◽  
Zhuang Sha ◽  
...  
2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Qiang Fu ◽  
Shaoshan Li ◽  
Qingjiu Zhou ◽  
Kugeluke Yalikun ◽  
Dilimulati Yisireyili ◽  
...  

Abstract LINC00599 has been suggested to be involved in physiological and pathological processes including carcinogenesis. However, the clinical and prognostic significance of LINC00599 in glioma patients and the effect of LINC00599 on glioma cell migration and invasion remain unknown. In our results, we first observe the expression of LINC00599 in 31 types of human cancers including tumor tissues and corresponding normal tissues at The Cancer Genome Atlas (TCGA) database, and found that LINC00599 expression levels were only reduced in lower grade glioma (LGG) tissues and glioblastoma multiforme (GBM) tissues compared with normal brain tissues. Moreover, we confirmed levels of LINC00599 expression were decreased in glioma tissues and cell lines compared with matched adjacent normal tissues and normal human astrocytes (NHAs), respectively. Meanwhile, we found that glioma tissues with WHO III-IV grade exhibited lower levels of LINC00599 expression than glioma tissues with I-II grade. The survival analysis at TCGA data showed low LINC00599 expression was associated with poor disease-free survival and overall survival in glioma patients. In vitro study suggested up-regulation of LINC00599 depressed glioma cell migration and invasion through regulating epithelial–mesenchymal transition (EMT) process. In conclusion, LINC00599 acts as a tumor-suppressing long non-coding RNA (lncRNA) in glioma.


2021 ◽  
pp. 096032712110061
Author(s):  
D Cao ◽  
L Chu ◽  
Z Xu ◽  
J Gong ◽  
R Deng ◽  
...  

Background: Visfatin acts as an oncogenic factor in numerous tumors through a variety of cellular processes. Visfatin has been revealed to promote cell migration and invasion in gastric cancer (GC). Snai1 is a well-known regulator of EMT process in cancers. However, the relationship between visfatin and snai1 in GC remains unclear. The current study aimed to explore the role of visfatin in GC. Methods: The RT-qPCR and western blot analysis were used to measure RNA and protein levels, respectively. The cell migration and invasion were tested by Trans-well assays and western blot analysis. Results: Visfatin showed upregulation in GC cells. Additionally, Visfatin with increasing concentration facilitated epithelial-mesenchymal transition (EMT) process by increasing E-cadherin and reducing N-cadherin and Vimentin protein levels in GC cells. Moreover, endogenous overexpression and knockdown of visfatin promoted and inhibited migratory and invasive abilities of GC cells, respectively. Then, we found that snai1 protein level was positively regulated by visfatin in GC cells. In addition, visfatin activated the NF-κB signaling to modulate snai1 protein expression. Furthermore, the silencing of snai1 counteracted the promotive impact of visfatin on cell migration, invasion and EMT process in GC. Conclusion: Visfatin facilitates cell migration, invasion and EMT process by targeting snai1 via the NF-κB signaling, which provides a potential insight for the treatment of GC.


2020 ◽  
Vol 22 (1) ◽  
pp. 89
Author(s):  
Ha Thi Thu Do ◽  
Jungsook Cho

Chemokine–receptor interactions play multiple roles in cancer progression. It was reported that the overexpression of X-C motif chemokine receptor 1 (XCR1), a specific receptor for chemokine X-C motif chemokine ligand 1 (XCL1), stimulates the migration of MDA-MB-231 triple-negative breast cancer cells. However, the exact mechanisms of this process remain to be elucidated. Our study found that XCL1 treatment markedly enhanced MDA-MB-231 cell migration. Additionally, XCL1 treatment enhanced epithelial–mesenchymal transition (EMT) of MDA-MB-231 cells via E-cadherin downregulation and upregulation of N-cadherin and vimentin as well as increases in β-catenin nucleus translocation. Furthermore, XCL1 enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, the effects of XCL1 on cell migration and intracellular signaling were negated by knockdown of XCR1 using siRNA, confirming XCR1-mediated actions. Treating MDA-MB-231 cells with U0126, a specific mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, blocked XCL1-induced HIF-1α accumulation and cell migration. The effect of XCL1 on cell migration was also evaluated in ER-/HER2+ SK-BR-3 cells. XCL1 also promoted cell migration, EMT induction, HIF-1α accumulation, and ERK phosphorylation in SK-BR-3 cells. While XCL1 did not exhibit any significant impact on the matrix metalloproteinase (MMP)-2 and -9 expressions in MDA-MB-231 cells, it increased the expression of these enzymes in SK-BR-3 cells. Collectively, our results demonstrate that activation of the ERK/HIF-1α/EMT pathway is involved in the XCL1-induced migration of both MDA-MB-231 and SK-BR-3 breast cancer cells. Based on our findings, the XCL1–XCR1 interaction and its associated signaling molecules may serve as specific targets for the prevention of breast cancer cell migration and metastasis.


2013 ◽  
Vol 31 (4) ◽  
pp. 234-241 ◽  
Author(s):  
Zheng-Xiang Han ◽  
Xiao-Xia Wang ◽  
Shang-Nuan Zhang ◽  
Jin-Xia Wu ◽  
He-ya Qian ◽  
...  

2021 ◽  
Author(s):  
Harrison L. Hiraki ◽  
Daniel L. Matera ◽  
William Y. Wang ◽  
Alexander A. Zarouk ◽  
Anna E. Argento ◽  
...  

ABSTRACTThe peritumoral stroma is a complex 3D tissue that provides cells with myriad biophysical and biochemical cues. Histologic observations suggest that during metastatic spread of carcinomas, these cues influence transformed epithelial cells, prompting a diversity of migration modes spanning single cell and multicellular phenotypes. Purported consequences of these variations in tumor escape strategies include differential metastatic capability and therapy resistance. Therefore, understanding how cues from the peritumoral stromal microenvironment regulate migration mode phenotypes has prognostic and therapeutic value. Here, we utilize a synthetic stromal mimetic in which matrix fiber density and bulk hydrogel stiffness can be orthogonally tuned to investigate the contribution of these two key matrix attributes on MCF10A migration mode phenotypes, epithelial-mesenchymal transition (EMT), and invasive potential. We developed an automated computational image analysis framework to extract migratory phenotypes from fluorescent images and determine 3D migration metrics relevant to metastatic spread. Using this analysis, we find that matrix fiber density and bulk hydrogel stiffness distinctly contribute to a variety of MCF10A migration modes including amoeboid, single mesenchymal, multicellular clusters, and collective strands. Taking advantage of the tunability of this material platform, we identify a combination of physical and soluble cues that induces distinct heterogeneous migration modes originating from the same MCF10A spheroid and use this setting to examine a functional consequence of migration mode – apoptotic resistance. We find that cells migrating as part of collective strands are more resistant to staurosporine-induced apoptosis than either disconnected multicellular clusters or individual invading cells. Improved models of the peritumoral stromal microenvironment that help elucidate relationships between matrix attributes and cell migration mode can contribute to ongoing efforts to identify efficacious cancer therapeutics that address migration plasticity-based therapy resistances.


2018 ◽  
Vol 107 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Xuanzhi Wang ◽  
Xingliang Dai ◽  
Xinzhi Zhang ◽  
Cheng Ma ◽  
Xinda Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document