Neural crest migration: interplay between chemorepellents, chemoattractants, contact inhibition, epithelial-mesenchymal transition, and collective cell migration

2012 ◽  
Vol 1 (3) ◽  
pp. 435-445 ◽  
Author(s):  
Eric Theveneau ◽  
Roberto Mayor
2015 ◽  
Vol 26 (25) ◽  
pp. 4577-4588 ◽  
Author(s):  
M. Hunter Lanier ◽  
Taekyung Kim ◽  
John A. Cooper

Cancer cell migration requires the regulation of actin networks at protrusions associated with invadopodia and other leading edges. Carcinomas become invasive after undergoing an epithelial–mesenchymal transition characterized by the appearance of vimentin filaments. While vimentin expression correlates with cell migration, the molecular connections between vimentin- and actin-based membrane protrusions are not understood. We report here that CARMIL2 (capping protein, Arp2/3, myosin-I linker 2) provides such a molecular link. CARMIL2 localizes to vimentin, regulates actin capping protein (CP), and binds to membranes. CARMIL2 is necessary for invadopodia formation, as well as cell polarity, lamellipodial assembly, membrane ruffling, macropinocytosis, and collective cell migration. Using point mutants and chimeras with defined biochemical and cellular properties, we discovered that localization to vimentin and CP binding are both essential for the function of CARMIL2 in cells. On the basis of these results, we propose a model in which dynamic vimentin filaments target CARMIL2 to critical membrane-associated locations, where CARMIL2 regulates CP, and thus actin assembly, to create cell protrusions.


Author(s):  
Kritika Saxena ◽  
Mohit Kumar Jolly ◽  
Kuppusamy Balamurugan

Epithelial-mesenchymal transition (EMT) is a cellular biological process involved in migration of primary cancer cells to secondary sites facilitating metastasis. Besides, EMT also confers properties such as stemness, drug resistance and immune evasion which can aid a successful colonization at the distant site. EMT is not a binary process; recent evidence suggests that cells in partial EMT or hybrid E/M phenotype(s) can have enhanced stemness and drug resistance as compared to those undergoing a complete EMT. Moreover, partial EMT enables collective migration of cells as clusters of circulating tumor cells or emboli, further endorsing that cells in hybrid E/M phenotypes may be the ‘fittest’ for metastasis. Here, we review mechanisms and implications of hybrid E/M phenotypes, including their reported association with hypoxia. Hypoxia-driven activation of HIF-1α can drive EMT. In addition, cyclic hypoxia, as compared to acute or chronic hypoxia, shows the highest levels of active HIF-1α and can augment cancer aggressiveness to a greater extent, including enriching for a partial EMT phenotype. We also discuss how metastasis is influenced by hypoxia, partial EMT and collective cell migration, and call for a better understanding of interconnections among these mechanisms. We discuss the known regulators of hypoxia, hybrid EMT and collective cell migration and highlight the gaps which needs to be filled for connecting these three axes which will increase our understanding of dynamics of metastasis and help control it more effectively.


2014 ◽  
Vol 206 (1) ◽  
pp. 113-127 ◽  
Author(s):  
Sei Kuriyama ◽  
Eric Theveneau ◽  
Alexandre Benedetto ◽  
Maddy Parsons ◽  
Masamitsu Tanaka ◽  
...  

Collective cell migration (CCM) and epithelial–mesenchymal transition (EMT) are common to cancer and morphogenesis, and are often considered to be mutually exclusive in spite of the fact that many cancer and embryonic cells that have gone through EMT still cooperate to migrate collectively. Here we use neural crest (NC) cells to address the question of how cells that have down-regulated cell–cell adhesions can migrate collectively. NC cell dissociation relies on a qualitative and quantitative change of the cadherin repertoire. We found that the level of cell–cell adhesion is precisely regulated by internalization of N-cadherin downstream of lysophosphatidic acid (LPA) receptor 2. Rather than promoting the generation of single, fully mesenchymal cells, this reduction of membrane N-cadherin only triggers a partial mesenchymal phenotype. This intermediate phenotype is characterized by an increase in tissue fluidity akin to a solid-like–to–fluid-like transition. This change of plasticity allows cells to migrate under physical constraints without abolishing cell cooperation required for collectiveness.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3708
Author(s):  
Inés Sáenz-de-Santa-María ◽  
Lucía Celada ◽  
Andrés San José Martínez ◽  
Tamara Cubiella ◽  
María-Dolores Chiara

Metastasis remains a clinically unsolved issue in cancer that is initiated by the acquisition of collective migratory properties of cancer cells. Phenotypic and functional heterogeneity that arise among cancer cells within the same tumor increase cellular plasticity and promote metastasis, however, their impact on collective cell migration is incompletely understood. Here, we show that in vitro collective cancer cell migration depends on FAK and MMP-2 and on the presence of cancer-associated fibroblasts (CAFs). The absence of functional FAK rendered cancer cells incapable of invading the surrounding stroma. However, CAFs and cancer cells over-expressing MMP-2 released FAK-deficient cells from this constraint by taking the leader positions in the invasive tracks, pushing FAK-deficient squamous cell carcinoma (SCC) cells towards the stroma and leading to the transformation of non-invasive cells into invasive cells. Our cell-based studies and the RNAseq data from the TCGA cohort of patients with head and neck squamous cell carcinomas reveal that, although both FAK and MMP-2 over-expression are associated with epithelial–mesenchymal transition, it is only MMP-2, not FAK, that functions as an independent prognostic factor. Given the significant role of MMP-2 in cancer dissemination, targeting of this molecule, better than FAK, presents a more promising opportunity to block metastasis.


2016 ◽  
Vol 213 (5) ◽  
pp. 505-507 ◽  
Author(s):  
Marianne E. Bronner

Collective cell migration is a common feature in both embryogenesis and metastasis. By coupling studies of neural crest migration in vivo and in vitro with mathematical modeling, Szabó et al. (2016, J. Cell Biol., http://dx.doi.org/10.1083/jcb.201602083) demonstrate that the proteoglycan versican forms a physical boundary that constrains neural crest cells to discrete streams, in turn facilitating their migration.


2021 ◽  
Vol 8 (5) ◽  
pp. 65
Author(s):  
Song-Yi Park ◽  
Hwanseok Jang ◽  
Seon-Young Kim ◽  
Dasarang Kim ◽  
Yongdoo Park ◽  
...  

Collective cell migration of epithelial tumor cells is one of the important factors for elucidating cancer metastasis and developing novel drugs for cancer treatment. Especially, new roles of E-cadherin in cancer migration and metastasis, beyond the epithelial–mesenchymal transition, have recently been unveiled. Here, we quantitatively examined cell motility using micropatterned free edge migration model with E-cadherin re-expressing EC96 cells derived from adenocarcinoma gastric (AGS) cell line. EC96 cells showed increased migration features such as the expansion of cell islands and straightforward movement compared to AGS cells. The function of tight junction proteins known to E-cadherin expression were evaluated for cell migration by knockdown using sh-RNA. Cell migration and straight movement of EC96 cells were reduced by knockdown of ZO-1 and claudin-7, to a lesser degree. Analysis of the migratory activity of boundary cells and inner cells shows that EC96 cell migration was primarily conducted by boundary cells, similar to leader cells in collective migration. Immunofluorescence analysis showed that tight junctions (TJs) of EC96 cells might play important roles in intracellular communication among boundary cells. ZO-1 is localized to the base of protruding lamellipodia and cell contact sites at the rear of cells, indicating that ZO-1 might be important for the interaction between traction and tensile forces. Overall, dynamic regulation of E-cadherin expression and localization by interaction with ZO-1 protein is one of the targets for elucidating the mechanism of collective migration of cancer metastasis.


2020 ◽  
Author(s):  
David Tatarakis ◽  
Adam Tuttle ◽  
Thomas F. Schilling

ABSTRACTCell migration requires dynamic regulation of cell-cell signaling and cell adhesion. Neural crest (NC) cells are highly migratory cells, which undergo an epithelial-mesenchymal transition (EMT) to leave the neural epithelium and migrate throughout the body to give rise to many different derivatives. We have identified a Lim-domain only (Lmo) protein, Lmo7a, expressed in early NC cells that controls both actin cytoskeletal dynamics and Wnt signaling during NC migration. In embryos deficient in Lmo7a, many NC cells fail to migrate away from the dorsal midline, and form aggregates. Unlike the majority of NC cells that appear to migrate normally, cells that aggregate in Lmo7a-deficient embryos mislocalize paxillin (Pxn) and have reduced levels of phosphorylated focal adhesion kinase (pFAK). Lmo7a loss-of-function also disrupts canonical Wnt signaling such that after the onset of NC cell migration, Wnt responses and nuclear β-catenin levels increase in the cells that aggregate. However, this increase in Wnt signaling appears secondary to the defect in migration. Similar to mutants for other Wnt regulators in NC cells, the NC cells in Lmo7a-deficient aggregates exhibit gene expression signatures of pigment cell progenitors, but also express markers of Schwann cell progenitors, suggesting a role for Lmo7a in pigment-glial specification. We propose that Lmo7a modulates cell adhesion to facilitate both robust NC cell migration and a subset of lineage decisions.


2021 ◽  
pp. 096032712110061
Author(s):  
D Cao ◽  
L Chu ◽  
Z Xu ◽  
J Gong ◽  
R Deng ◽  
...  

Background: Visfatin acts as an oncogenic factor in numerous tumors through a variety of cellular processes. Visfatin has been revealed to promote cell migration and invasion in gastric cancer (GC). Snai1 is a well-known regulator of EMT process in cancers. However, the relationship between visfatin and snai1 in GC remains unclear. The current study aimed to explore the role of visfatin in GC. Methods: The RT-qPCR and western blot analysis were used to measure RNA and protein levels, respectively. The cell migration and invasion were tested by Trans-well assays and western blot analysis. Results: Visfatin showed upregulation in GC cells. Additionally, Visfatin with increasing concentration facilitated epithelial-mesenchymal transition (EMT) process by increasing E-cadherin and reducing N-cadherin and Vimentin protein levels in GC cells. Moreover, endogenous overexpression and knockdown of visfatin promoted and inhibited migratory and invasive abilities of GC cells, respectively. Then, we found that snai1 protein level was positively regulated by visfatin in GC cells. In addition, visfatin activated the NF-κB signaling to modulate snai1 protein expression. Furthermore, the silencing of snai1 counteracted the promotive impact of visfatin on cell migration, invasion and EMT process in GC. Conclusion: Visfatin facilitates cell migration, invasion and EMT process by targeting snai1 via the NF-κB signaling, which provides a potential insight for the treatment of GC.


Sign in / Sign up

Export Citation Format

Share Document