The effects of a PDL analogue on occlusal contact forces

Author(s):  
Adrian V. deMoya ◽  
Evan R. Schmidt ◽  
George J. Eckert ◽  
Thomas R. Katona
1999 ◽  
Vol 121 (3) ◽  
pp. 290-297 ◽  
Author(s):  
L. Wang ◽  
J. P. Sadler ◽  
L. C. Breeding ◽  
D. L. Dixon

Many unsolved problems in dental implant research concern the interfacial stress distributions between the implant components, as well as between the implant surface and contacting bone. To obtain a mechanical understanding of how vertical and horizontal occlusal forces are distributed in this context, it is crucial to develop in vitro testing systems to measure the force transmission between dental implants and attached prostheses. A new approach to such testing, involving a robotic system, is described in this investigation. The system has been designed to produce simulated mandibular movements and occlusal contact forces so that various implant designs and procedures can be thoroughly tested and evaluated before animal testing or human clinical trials. Two commonly used fixed prosthesis designs used to connect an implant and a tooth, a rigid connection and a nonrigid connection, were fabricated and used for experimental verification. The displacement and force distributions generated during simulated chewing activities were measured in vitro. Force levels, potentially harmful to human bone surrounding the connected dental implant and tooth, were analyzed. These results are useful in the design of prostheses and connecting components that will reduce failures and limit stress transfer to the implant/bone interface.


2019 ◽  
Vol 46 (5) ◽  
pp. 468-474 ◽  
Author(s):  
Christopher J. Beninati ◽  
Thomas R. Katona

Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


2008 ◽  
Vol 36 (3) ◽  
pp. 211-226 ◽  
Author(s):  
F. Liu ◽  
M. P. F. Sutcliffe ◽  
W. R. Graham

Abstract In an effort to understand the dynamic hub forces on road vehicles, an advanced free-rolling tire-model is being developed in which the tread blocks and tire belt are modeled separately. This paper presents the interim results for the tread block modeling. The finite element code ABAQUS/Explicit is used to predict the contact forces on the tread blocks based on a linear viscoelastic material model. Special attention is paid to investigating the forces on the tread blocks during the impact and release motions. A pressure and slip-rate-dependent frictional law is applied in the analysis. A simplified numerical model is also proposed where the tread blocks are discretized into linear viscoelastic spring elements. The results from both models are validated via experiments in a high-speed rolling test rig and found to be in good agreement.


Author(s):  
Sterling McBride ◽  
Ricardo Burdisso ◽  
Corina Sandu

ABSTRACT Tire-pavement interaction noise (TPIN) is one of the main sources of exterior noise produced by vehicles traveling at greater than 50 kph. The dominant frequency content is typically within 500–1500 Hz. Structural tire vibrations are among the principal TPIN mechanisms. In this work, the structure of the tire is modeled and a new wave propagation solution to find its response is proposed. Multiple physical effects are accounted for in the formulation. In an effort to analyze the effects of curvature, a flat plate and a cylindrical shell model are presented. Orthotropic and nonuniform structural properties along the tire's transversal direction are included to account for differences between its sidewalls and belt. Finally, the effects of rotation and inflation pressure are also included in the formulation. Modeled frequency response functions are analyzed and validated. In addition, a new frequency-domain formulation is presented for the computation of input tread pattern contact forces. Finally, the rolling tire's normal surface velocity response is coupled with a boundary element model to demonstrate the radiated noise at the leading and trailing edge locations. These results are then compared with experimental data measured with an on-board sound intensity system.


Alloy Digest ◽  
1999 ◽  
Vol 48 (1) ◽  

Abstract Olin C197 is a second-generation high performance alloy developed by Olin Brass. It has a strength and bend formability similar to C194 (see Alloy Digest Cu-360, September 1978), but with 25% higher electrical and thermal conductivity. High conductivity allows C197 to replace brasses and bronzes in applications where high current-carrying capability is required. Also, the strength of C197 provides higher contact forces when substituted for many lower strength coppers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion and wear resistance as well as forming and joining. Filing Code: CU-627. Producer or source: Olin Brass.


1997 ◽  
Vol 41 (5) ◽  
pp. 822-829
Author(s):  
Makoto Takenaka ◽  
Yutaka Ito ◽  
Shigemitsu Sakuma ◽  
Yoshinori Mukaida ◽  
Kentaro Nakamura ◽  
...  

1988 ◽  
Vol 32 (4) ◽  
pp. 767-773
Author(s):  
Nobuaki Shiina ◽  
Yoshiaki Okikura ◽  
Kaoru Iwase ◽  
Hiroaki Hirata ◽  
Yutaka Miida ◽  
...  

2018 ◽  
Author(s):  
Dr Malathi Dayalan ◽  
Dr Sudeshna Sharma ◽  
Dr Shweta Poovani ◽  
Dr Saher Altaf

BACKGROUND Masticatory system is a complex functional unit, primarily engaged in chewing, swallowing and breathing functions, and some parts are involved in taste recognition and determination of food consistency. Sophisticated functional performances of speech and emotional expressions are specifically human qualities. Irregularities in occlusion appears to be the precipitating factor in the pathogenesis of myofascial pain dysfunction syndrome. Tek- Scan III records the bite length, number, distribution, timing, duration and the relative force of each tooth contact. It also records the sequence of occlusal contacts in terms of time and the associated force with each occlusal contact. The aim of this study was to treat masticatory muscle disorders with occlusal equilibration, and compare the efficacy of treatment outcomes between selective grinding and stabilization splints using Tek-Scan III. OBJECTIVE Objective of this study was to compare the efficacy of occlusal equilibration achieved through selective griding and stabilization splints using Tek-Scan III. METHODS In this in vivo study, 40 patients with masticatory muscle disorders were selected based on the inclusion and exclusion criteria. The occlusal discrepancies were analyzed using Tek-Scan III. The selected 40 subjects were then randomly divided into 2 groups based on the treatment they recieved; Group I – Selective grinding group (20) and Group II – Stabilization splint group (20). Comparison of pre-treatment and post treatment results were evaluated in terms of pain, mouth opening, left and right side force percentage as recorded through Tek-Scan III and reduction of disclusion time. Statistical analysis was carried out with Kolmogorov Smirnov test, Wilcoxon matched pair test and Mann-Whitney U test. RESULTS Wilcoxon matched pairs test demonstrated that there was statistically significant results ( p = 0.0007) in both the groups for reduction of disclusion time, elimination of pain and improved mouth opening. Patients in Group I showed better results as compared to Group II in terms of disclusion time, pain and mouth opening. CONCLUSIONS Occlusal equilibration brought about by reducing the disclusion time using the Tek- Scan III reduced the symptoms of pain in masticatory muscles. Patients in group I (Selective grinding) however showed better results when compared to patients in group II (Stabilization splints).


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 966 ◽  
Author(s):  
Marco Costanzo ◽  
Giuseppe De Maria ◽  
Ciro Natale ◽  
Salvatore Pirozzi

This paper presents the design and calibration of a new force/tactile sensor for robotic applications. The sensor is suitably designed to provide the robotic grasping device with a sensory system mimicking the human sense of touch, namely, a device sensitive to contact forces, object slip and object geometry. This type of perception information is of paramount importance not only in dexterous manipulation but even in simple grasping tasks, especially when objects are fragile, such that only a minimum amount of grasping force can be applied to hold the object without damaging it. Moreover, sensing only forces and not moments can be very limiting to securely grasp an object when it is grasped far from its center of gravity. Therefore, the perception of torsional moments is a key requirement of the designed sensor. Furthermore, the sensor is also the mechanical interface between the gripper and the manipulated object, therefore its design should consider also the requirements for a correct holding of the object. The most relevant of such requirements is the necessity to hold a torsional moment, therefore a soft distributed contact is necessary. The presence of a soft contact poses a number of challenges in the calibration of the sensor, and that is another contribution of this work. Experimental validation is provided in real grasping tasks with two sensors mounted on an industrial gripper.


Sign in / Sign up

Export Citation Format

Share Document