Fracture Toughness, Flexural Strength, and Flexural Modulus of New CAD/CAM Resin Composite Blocks

2019 ◽  
Vol 29 (1) ◽  
pp. 34-41 ◽  
Author(s):  
Iben J.R. Lucsanszky ◽  
N. Dorin Ruse
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Wojciech Grzebieluch ◽  
Marcin Mikulewicz ◽  
Urszula Kaczmarek

Objective. The aim was to evaluate the flexural strength, flexural modulus, microhardness, Weibull modulus, and characteristic strength of six resin composite blocks (Grandio Blocs-GR, Tetric CAD-TE, Brilliant Crios-CR, Katana Avencia-AV, Cerasmart-CS, and Shofu Block HC-HC). Methods. Flexural strength and flexural modulus were measured using a three-point bending test and microhardness using the Vickers method. Weibull analysis was also performed. Results. The materials showed flexural strength ranging from 120.38 (HC) to 186.02 MPa (GR), flexural modulus from 8.26 (HC) to 16.95 GPa (GR), and microhardness from 70.85 (AV) to 140.43 (GR). Weibull modulus and characteristic strength ranged from 16.35 (CS) to 34.98 (TE) and from 123.45 MPa (HC) to 190.3 MPa (GR), respectively. Conclusions. GR, TE, and CR presented significantly higher flexural strength, modulus, Weibull modulus, and characteristic strength than the others.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1745
Author(s):  
Tamaki Hada ◽  
Manabu Kanazawa ◽  
Maiko Iwaki ◽  
Awutsadaporn Katheng ◽  
Shunsuke Minakuchi

In this study, the physical properties of a custom block manufactured using a self-polymerizing resin (Custom-block), the commercially available CAD/CAM PMMA disk (PMMA-disk), and a heat-polymerizing resin (Conventional PMMA) were evaluated via three different tests. The Custom-block was polymerized by pouring the self-polymerizing resin into a special tray, and Conventional PMMA was polymerized with a heat-curing method, according to the manufacturer’s recommended procedure. The specimens of each group were subjected to three-point bending, water sorption and solubility, and staining tests. The results showed that the materials met the requirements of the ISO standards in all tests, except for the staining tests. The highest flexural strength was exhibited by the PMMA-disk, followed by the Custom-block and the Conventional PMMA, and a significant difference was observed in the flexural strengths of all the materials (p < 0.001). The Custom-block showed a significantly higher flexural modulus and water solubility. The water sorption and discoloration of the Custom-block were significantly higher than those of the PMMA-disk, but not significantly different from those of the Conventional PMMA. In conclusion, the mechanical properties of the three materials differed depending on the manufacturing method, which considerably affected their flexural strength, flexural modulus, water sorption and solubility, and discoloration.


2007 ◽  
Vol 336-338 ◽  
pp. 1587-1589
Author(s):  
Wen Xu Li ◽  
Hua Zhao ◽  
Ying Song ◽  
Bin Su ◽  
Fu Ping Wang

Ca3(PO4)2/ZrO2 dental composite ceramics using for CAD/CAM system were prepared and the effects of weak phases on microstructures and mechanical properties were studied. The results showed that intergranular spreads happened with the increasing Ca3(PO4)2 contents due to the discontinuity of weak interfaces between Zirconia and Calcium phosphate in matrix. So the flexural strength and hardness of the Ca3(PO4)2/ZrO2 composite ceramics were decreased effectively, which improved the machinability of the composites. On the other hand, strong interfaces between Zirconias increased the integrality of the ceramic structures. ZrO2 composite Ceramics with 15% Ca3(PO4)2 were sintered at 1350°C. The flexural strength is 300.44MPa, fracture toughness is 4.36 MPam1/2, and hardness is 6.69 GPa. The cutting exponent of the Ca3(PO4)2/ZrO2 composite ceramics is obviously lower than that of the common commercial Vita Mark II and Dicor MGC ceramics, which shows good mechanical properties and machinability.


2002 ◽  
Vol 21 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Kiyoshi KAKUTA ◽  
Somchai URAPEPON ◽  
Yukio MIYAGAWA ◽  
Hideo OGURA ◽  
Masahiko YAMANAKA ◽  
...  

2019 ◽  
Vol 44 (5) ◽  
pp. E254-E262 ◽  
Author(s):  
EB Benalcázar Jalkh ◽  
CM Machado ◽  
M Gianinni ◽  
I Beltramini ◽  
MMT Piza ◽  
...  

SUMMARY New resin-based restorative materials have been developed, such as computer-aided design/computer-aided manufacturing (CAD/CAM) and bulk-fill composites, as an alternative to traditional layering techniques. This study evaluated the biaxial flexural strength (BFS) before and after thermocycling of five different resin composites: one hybrid resin/ceramic CAD/CAM indirect material, Lava Ultimate CAD-CAM Restorative (LU, 3M Oral Care); a conventional composite, Filtek Z350 XT (Z350, 3M Oral Care); two bulk-fill composites, Tetric N-Ceram Bulk Fill (TBF, Ivoclar Vivadent) and Filtek Bulk Fill (FBF, 3M Oral Care); and one bulk-fill flow resin composite, Filtek Bulk Fill Flow (FBFF, 3M Oral Care). Three hundred disc-shaped specimens (6.5 mm in diameter and 0.5 mm thick) were fabricated and divided into five groups (n=30 for each composite and condition). The BFS test was performed in a universal testing machine at a crosshead speed of 0.5 mm/min immediately (i, 24 hours) and after thermocycling (a, 500 thermal cycles of 5°C to 55°C with a 30-second dwell time). The Weibull modulus (m) and characteristic stress (η) were calculated, and a contour plot was used (m vs η) to detect differences between groups (95% two-sided confidence intervals). Significantly higher characteristic stress was observed for LUi (286.6 MPa) and Z350i (248.8 MPa) compared to the bulk-fill groups (FBFi=187.9 MPa, FBFFi=175.9 MPa, TBFi=149.9 MPa), with no differences between LUi and Z350i. Thermocycling significantly decreased the characteristic stress of all groups with the highest values observed for LUa (186.7 MPa) and Z350a (188.9 MPa) and the lowest for FBFFa (90.3 MPa). Intermediate values were observed for FBFa (151.6 MPa) and TBFa (122.8 MPa). The Weibull modulus decreased only for FBFa compared to FBFi. Composition and thermocycling significantly influenced the biaxial flexural strength of resin composite materials.


2005 ◽  
Vol 84 (7) ◽  
pp. 659-662 ◽  
Author(s):  
A. Peutzfeldt ◽  
E. Asmussen

According to the ‘total energy concept’, properties of light-cured resin composites are determined only by energy density because of reciprocity between power density and exposure duration. The kinetics of polymerization is complex, and it was hypothesized that degree of cure, flexural strength, and flexural modulus were influenced not only by energy density, but also by power density per se. A conventional resin composite was cured at 3 energy densities (4, 8, and 16 J/cm2) by 6 combinations of power density (50, 100, 200, 400, 800, and 1000 mW/cm2) and exposure durations. Degree of cure, flexural strength, and flexural modulus increased with increasing energy density. For each energy density, degree of cure decreased with increasing power density. Flexural strength and modulus showed a maximum at intermediate power density. Within clinically relevant power densities, not only energy density but also power density per se had significant influence on resin composite properties.


2002 ◽  
Vol 81 (7) ◽  
pp. 487-491 ◽  
Author(s):  
R.G. Luthardt ◽  
M. Holzhüter ◽  
O. Sandkuhl ◽  
V. Herold ◽  
J.D. Schnapp ◽  
...  

Yttria-stabilized zirconia ceramics is a high-performance material with excellent biocompatibility and mechanical properties, which suggest its suitability for posterior fixed partial dentures. The hypothesis under examination is that the strength and reliability of Y-TZP zirconia ceramics are affected by the inner surface grinding of crowns, and vary with the grinding parameter. Flexural strength, surface roughness, and fracture toughness were determined on samples machined by face and peripheral grinding with varied feed velocities and cutting depths. Results have been compared with those on lapped samples. Analysis of variance and Weibull parameter were used for statistical analysis. It was found that inner surface grinding significantly reduces the strength and reliability of Y-TZP zirconia compared with the lapped control sample. Co-analysis of flexural strength, Weibull parameter, and fracture toughness showed counteracting effects of surface compressive stress and grinding-introduced surface flaws. In conclusion, grinding of Y-TZP needs to be optimized to achieve the CAD/CAM manufacture of all-ceramic restorations with improved strength and reliability.


Author(s):  
Kiara Serafini Dapieve ◽  
Renan Vaz Machry ◽  
Gabriel Kalil Rocha Pereira ◽  
Andressa Borin Venturini ◽  
André Valcanaia ◽  
...  

Author(s):  
Ayşe Atay DDS, PhD ◽  
Elçin Sağirkaya DDS, PhD

The aim of this study was to evaluate mechanical properties of six new-generation all-ceramic materials for CAD/CAM (Lava Ultimate [LU], VITA Mark II [VM], InCoris TZI [IC], IPS e.max CAD [EM], VITA Suprinity [VS], IPS Empress CAD [EC]) and two different provisional restoration CAD/CAM materials (Telio CAD [TC], Vita CAD-Temp [VC]) after different storage conditions. 36 bar-shaped samples of 4 mm in width and 14 mm in length with 1.2 mm thicknesses were prepared from each material group (N=288). The specimens from each material were kept under three different storage conditions (n=12): under dry conditions at room temperature; 37°C distilled water for 7 days; and 37°C distilled water for 7 days followed by 10,000 thermal cycles. All specimens were subjected to a 3-point flexural test with a crosshead speed of 1.0 mm/min. The specimens were loaded until failure. Twelve fractured specimens after the flexural test from each group were used for the Vickers hardness test (under 300 gf of loading in 15 seconds). The flexural modulus, flexural strength and Vickers hardness values were separately analyzed with two-way analysis of variance, Tukey’s multiple comparison tests at a significance level of p<0.05. There were statistically significant differences between materials and storage conditions according to flexural modulus, flexural strength and Vickers hardness values (p<0.05).  The flexural strength, flexural modulus and Vickers hardness values of LU, VC, TC, VS and IC decreased after water storage followed by thermal cycling (p<0.05). The mechanical properties of provisional restoration CAD/CAM materials had showed a significantly decrease after water storage followed by thermal cycles but their mechanical properties were acceptable for fabrication of provisional restorations. The mechanical properties of VM, EC and EM were not affected by different storage conditions whereas IC and VS were affected.


Sign in / Sign up

Export Citation Format

Share Document