scholarly journals Spatial, climate and ploidy factors drive genomic diversity and resilience in the widespread grass Themeda triandra

2020 ◽  
Vol 29 (20) ◽  
pp. 3872-3888 ◽  
Author(s):  
Collin W. Ahrens ◽  
Elizabeth A. James ◽  
Adam D. Miller ◽  
Ferguson Scott ◽  
Nicola C. Aitken ◽  
...  
2019 ◽  
Author(s):  
CW Ahrens ◽  
EA James ◽  
AD Miller ◽  
NC Aitken ◽  
JO Borevitz ◽  
...  

SummaryFragmented grassland ecosystems, and the species that shape them, are under immense pressure. Restoration and management strategies should include genetic diversity and adaptive capacity to improve success but these data are generally unavailable. Therefore, we use the foundational grass, Themeda triandra, to test how spatial, environmental, and ploidy factors shape patterns of genetic variation.We used reduced-representation genome sequencing on 487 samples from 52 locations to answer fundamental questions about how the distribution of genomic diversity and ploidy polymorphism supports adaptation to harsher climates. We explicitly quantified isolation-by-distance (IBD), isolation-by-environment (IBE), and predicted population genomic vulnerability in 2070.We found that a majority (54%) of the genomic variation could be attributed to IBD, while 22% of the genomic variation could be explained by four climate variables showing IBE. Results indicate that heterogeneous patterns of vulnerability across populations are due to genetic variation, multiple climate factors, and ploidy polymorphism, which lessened genomic vulnerability in the most susceptible populations.These results indicate that restoration and management of T. triandra should incorporate knowledge of genomic diversity and ploidy polymorphisms to increase the likelihood of population persistence and restoration success in areas that will become hotter and more arid.


2019 ◽  
Vol 15 (9) ◽  
pp. 20190491 ◽  
Author(s):  
Nicolas Dussex ◽  
Johanna von Seth ◽  
Michael Knapp ◽  
Olga Kardailsky ◽  
Bruce C. Robertson ◽  
...  

Human intervention, pre-human climate change (or a combination of both), as well as genetic effects, contribute to species extinctions. While many species from oceanic islands have gone extinct due to direct human impacts, the effects of pre-human climate change and human settlement on the genomic diversity of insular species and the role that loss of genomic diversity played in their extinctions remains largely unexplored. To address this question, we sequenced whole genomes of two extinct New Zealand passerines, the huia ( Heteralocha acutirostris ) and South Island kōkako ( Callaeas cinereus ). Both species showed similar demographic trajectories throughout the Pleistocene. However, the South Island kōkako continued to decline after the last glaciation, while the huia experienced some recovery. Moreover, there was no indication of inbreeding resulting from recent mating among closely related individuals in either species. This latter result indicates that population fragmentation associated with forest clearing by Maōri may not have been strong enough to lead to an increase in inbreeding and exposure to genomic erosion. While genomic erosion may not have directly contributed to their extinctions, further habitat fragmentation and the introduction of mammalian predators by Europeans may have been an important driver of extinction in huia and South Island kōkako.


2011 ◽  
Vol 89 (6) ◽  
pp. 453-465 ◽  
Author(s):  
Daryl Codron ◽  
Jacqui Codron ◽  
Matt Sponheimer ◽  
Stefano M. Bernasconi ◽  
Marcus Clauss

The stable carbon isotope composition of animal tissues represents the weighted sum of the variety of food sources eaten. If sources differ in digestibility, tissues may overrepresent intake of more digestible items and faeces may overrepresent less digestible items. We tested this idea using whole blood and faeces of goats ( Capra hircus L., 1758) fed different food mixtures of C3 lucerne ( Medicago sativa L.) and C4 grass ( Themeda triandra Forssk.). Although blood and faecal δ13C values were broadly consistent with diet, results indicate mismatch between consumer and diet isotope compositions: both materials overrepresented the C3 (lucerne) component of diets. Lucerne had lower fibre digestibility than T. triandra, which explains the results for faeces, whereas underrepresentation of dietary C4 in blood is consistent with low protein content of the grass hay. A diet switch experiment revealed an important difference in 13C-incorporation rates across diets, which were slower for grass than lucerne diets, and in fact equilibrium states were not reached for all diets. Although more research is needed to link digestive kinetics with isotope incorporation, these results provide evidence for nonlinear relationships between consumers and their diets, invoking concerns about the conceptual value of “discrimination factors” as the prime currency for contemporary isotope ecology.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 241-242
Author(s):  
Yongjie Wang ◽  
Keshari Thakali ◽  
Sarah Shelby ◽  
Jason Apple ◽  
Yan Huang

Abstract The purpose of this study was to compare the meat quality and genomic differences between cross-bred commercial pig (CP) and domestic Large Black pig (BP). Seven cross-bred commercial pigs and eight British Large Black pigs were assigned to CP group and BP group, with initial mean body weights of 18.82±1.412 kg for CP group and 23.31±1.935 kg for BP group, P = 0.061, and fed ad libitum. The final BW of the CP at d101 was similar to the BP (130.0±8.16 kg vs. 121.1±2.80 kg, P = 0.132). However, the BP group took 108 days to reach the final BW. The ADG in the CP was higher than BP (1.102±0.0599 kg vs. 0.905±0.0138 kg, P = 0.003). The hot carcass weight of CP was higher (P < 0.01) than BP, but the backfat of BP was higher (P < 0.01) than CP. The a* value of CP was higher (P < 0.05) than BP, and the c* value of CP was tended to be higher (P < 0.10) than BP. However, the h value of BP was higher (P < 0.05) than CP. The longissimus dorsi muscle fat content of BP was higher (P < 0.05) than CP. For the fatty acid composition, the SFA and MUFA of BP were higher (P < 0.05) than CP, but the PUFA of CP was higher (P < 0.05) than BP. The metmyoglobin content of CP was tended to be higher (P < 0.10) than BP. For the meat metabolism, the oxygen consumption of longissimus dorsi muscle of BP was higher (P < 0.01) than CP. The RNA-Seq data showed that the expression of the genes related to lipid metabolism is higher in BP (fold change > 3, P < 0.05). To conclude, BP has higher meat quality, while CP has its advantages in growth performance. And the differences between these two breeds may due to the genomic diversity.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoting Xia ◽  
Shunjin Zhang ◽  
Huaju Zhang ◽  
Zijing Zhang ◽  
Ningbo Chen ◽  
...  

Abstract Background Native cattle breeds are an important source of genetic variation because they might carry alleles that enable them to adapt to local environment and tough feeding conditions. Jiaxian Red, a Chinese native cattle breed, is reported to have originated from crossbreeding between taurine and indicine cattle; their history as a draft and meat animal dates back at least 30 years. Using whole-genome sequencing (WGS) data of 30 animals from the core breeding farm, we investigated the genetic diversity, population structure and genomic regions under selection of Jiaxian Red cattle. Furthermore, we used 131 published genomes of world-wide cattle to characterize the genomic variation of Jiaxian Red cattle. Results The population structure analysis revealed that Jiaxian Red cattle harboured the ancestry with East Asian taurine (0.493), Chinese indicine (0.379), European taurine (0.095) and Indian indicine (0.033). Three methods (nucleotide diversity, linkage disequilibrium decay and runs of homozygosity) implied the relatively high genomic diversity in Jiaxian Red cattle. We used θπ, CLR, FST and XP-EHH methods to look for the candidate signatures of positive selection in Jiaxian Red cattle. A total number of 171 (θπ and CLR) and 17 (FST and XP-EHH) shared genes were identified using different detection strategies. Functional annotation analysis revealed that these genes are potentially responsible for growth and feed efficiency (CCSER1), meat quality traits (ROCK2, PPP1R12A, CYB5R4, EYA3, PHACTR1), fertility (RFX4, SRD5A2) and immune system response (SLAMF1, CD84 and SLAMF6). Conclusion We provide a comprehensive overview of sequence variations in Jiaxian Red cattle genomes. Selection signatures were detected in genomic regions that are possibly related to economically important traits in Jiaxian Red cattle. We observed a high level of genomic diversity and low inbreeding in Jiaxian Red cattle. These results provide a basis for further resource protection and breeding improvement of this breed.


2021 ◽  
Vol 13 (4) ◽  
pp. 2289
Author(s):  
Mateja Janeš ◽  
Minja Zorc ◽  
Maja Ferenčaković ◽  
Ino Curik ◽  
Peter Dovč ◽  
...  

Balkan Livestock Guardian Dogs (LGD) were bred to help protect sheep flocks in sparsely populated, remote mountainous areas in the Balkans. The aim of this study was genomic characterization (107,403 autosomal SNPs) of the three LGD breeds from the Balkans (Karst Shepherd, Sharplanina Dog, and Tornjak). Our analyses were performed on 44 dogs representing three Balkan LGD breeds, as well as on 79 publicly available genotypes representing eight other LGD breeds, 70 individuals representing seven popular breeds, and 18 gray wolves. The results of multivariate, phylogenetic, clustering (STRUCTURE), and FST differentiation analyses showed that the three Balkan LGD breeds are genetically distinct populations. While the Sharplanina Dog and Tornjak are closely related to other LGD breeds, the Karst Shepherd is a slightly genetically distinct population with estimated influence from German Shepard (Treemix analysis). Estimated genomic diversity was high with low inbreeding in Sharplanina Dog (Ho = 0.315, He = 0.315, and FROH>2Mb = 0.020) and Tornjak (Ho = 0.301, He = 0.301, and FROH>2Mb = 0.033) breeds. Low diversity and high inbreeding were estimated in Karst Shepherds (Ho = 0.241, He = 0.222, and FROH>2Mb = 0.087), indicating the need for proper diversity management. The obtained results will help in the conservation management of Balkan LGD dogs as an essential part of the specific grazing biocultural system and its sustainable maintenance.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 904
Author(s):  
Saif ur Rehman ◽  
Faiz-ul Hassan ◽  
Xier Luo ◽  
Zhipeng Li ◽  
Qingyou Liu

The buffalo was domesticated around 3000–6000 years ago and has substantial economic significance as a meat, dairy, and draught animal. The buffalo has remained underutilized in terms of the development of a well-annotated and assembled reference genome de novo. It is mandatory to explore the genetic architecture of a species to understand the biology that helps to manage its genetic variability, which is ultimately used for selective breeding and genomic selection. Morphological and molecular data have revealed that the swamp buffalo population has strong geographical genomic diversity with low gene flow but strong phenotypic consistency, while the river buffalo population has higher phenotypic diversity with a weak phylogeographic structure. The availability of recent high-quality reference genome and genotyping marker panels has invigorated many genome-based studies on evolutionary history, genetic diversity, functional elements, and performance traits. The increasing molecular knowledge syndicate with selective breeding should pave the way for genetic improvement in the climatic resilience, disease resistance, and production performance of water buffalo populations globally.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Jaewon Lim ◽  
Hong-Tae Park ◽  
Seyoung Ko ◽  
Hyun-Eui Park ◽  
Gyumin Lee ◽  
...  

AbstractMycobacterium avium subsp. paratuberculosis (MAP) is a causative agent of Johne’s disease, which is a chronic granulomatous enteropathy in ruminants. Determining the genetic diversity of MAP is necessary to understand the epidemiology and biology of MAP, as well as establishing disease control strategies. In the present study, whole genome-based alignment and comparative analysis were performed using 40 publicly available MAP genomes, including newly sequenced Korean isolates. First, whole genome-based alignment was employed to identify new genomic structures in MAP genomes. Second, the genomic diversity of the MAP population was described by pangenome analysis. A phylogenetic tree based on the core genome and pangenome showed that the MAP was differentiated into two major types (C- and S-type), which was in keeping with the findings of previous studies. However, B-type strains were discriminated from C-type strains. Finally, functional analysis of the pangenome was performed using three virulence factor databases (i.e., PATRIC, VFDB, and Victors) to predict the phenotypic diversity of MAP in terms of pathogenicity. Based on the results of the pangenome analysis, we developed a real-time PCR technique to distinguish among S-, B- and C-type strains. In conclusion, the results of our study suggest that the phenotypic differences between MAP strains can be explained by their genetic polymorphisms. These results may help to elucidate the diversity of MAP, extending from genomic features to phenotypic traits.


Sign in / Sign up

Export Citation Format

Share Document