scholarly journals A complex regulatory network controlling intrinsic multidrug resistance inMycobacterium smegmatis

2013 ◽  
Vol 91 (1) ◽  
pp. 121-134 ◽  
Author(s):  
Joshua Bowman ◽  
Pallavi Ghosh
Author(s):  
Eric Pelfrene ◽  
Radu Botgros ◽  
Marco Cavaleri

Abstract Background Antimicrobial resistance (AMR) is a growing global problem to which the ongoing COVID-19 pandemic may further contribute. With resources deployed away from antimicrobial stewardship, evidence of substantial pre-emptive antibiotic use in COVID-19 patients and indirectly, with deteriorating economic conditions fuelling poverty potentially impacting on levels of resistance, AMR threat remains significant. Main body In this paper, main AMR countermeasures are revisited and priorities to tackle the issue are re-iterated. The need for collaboration is stressed, acknowledging the relationship between human health, animal health and environment (“One Health” approach). Among the stated priorities, the initiative by the European Medicines Regulatory Network to further strengthen the measures in combatting AMR is highlighted. Likewise, it is asserted that other emerging health threats require global collaboration with the One Health approach offering a valuable blueprint for action. Conclusion The authors stress the importance of an integrated preparedness strategy to tackle this public health peril.


2018 ◽  
Vol 200 (18) ◽  
Author(s):  
Mei G. Lei ◽  
Chia Y. Lee

ABSTRACTCapsule is one of many virulence factors produced byStaphylococcus aureus, and its expression is highly regulated. Here, we report the repression of capsule by direct interaction of XdrA and CodY with the capsule promoter region. We found, by footprinting analyses, that XdrA repressed capsule by binding to a broad region that extended from upstream of the −35 region of the promoter to the coding region ofcapA, the first gene of the 16-genecapoperon. Footprinting analyses also revealed that CodY bound to a large region that overlapped extensively with that of XdrA. We found that repression of thecapgenes in thexdrAmutant could be achieved by the overexpression ofcodYbut not vice versa, suggestingcodYis epistatic toxdrA. However, we found XdrA had no effect on CodY expression. These results suggest that XdrA plays a secondary role in capsule regulation by promoting CodY repression of thecapgenes. Oxacillin slightly inducedxdrAexpression and reducedcappromoter activity, but the effect of oxacillin on capsule was not mediated through XdrA.IMPORTANCEStaphylococcus aureusemploys a complex regulatory network to coordinate the expression of various virulence genes to achieve successful infections. How virulence genes are coordinately regulated is still poorly understood. We have been studying capsule regulation as a model system to explore regulatory networking inS. aureus. In this study, we found that XdrA and CodY have broad binding sites that overlap extensively in the capsule promoter region. Our results also suggest that XdrA assists CodY in the repression of capsule. As capsule gene regulation by DNA-binding regulators has not been fully investigated, the results presented here fill an important knowledge gap, thereby further advancing our understanding of the global virulence regulatory network inS. aureus.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Munekazu Yamakuchi

Vascular inflammation is an important component of the pathophysiology of cardiovascular diseases, such as hypertension, atherosclerosis, and aneurysms. All vascular cells, including endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and infiltrating cells, such as macrophages, orchestrate a series of pathological events. Despite dramatic improvements in the treatment of atherosclerosis, the molecular basis of vascular inflammation is not well understood. In the last decade, microRNAs (miRNAs) have been revealed as novel regulators of vascular inflammation. Each miRNAs suppresses a set of genes, forming complex regulatory network. This paper provides an overview of current advances that have been made in revealing the roles of miRNAs during vascular inflammation. Recent studies show that miRNAs not only exist inside cells but also circulate in blood. These circulating miRNAs are useful biomarkers for diagnosis of cardiovascular diseases. Furthermore, recent studies demonstrate that circulating miRNAs are delivered into certain recipient cells and act as messengers. These studies suggest that miRNAs provide new therapeutic opportunities.


2011 ◽  
Vol 63 (1) ◽  
pp. 293-304 ◽  
Author(s):  
F. Novillo ◽  
J. Medina ◽  
M. Rodriguez-Franco ◽  
G. Neuhaus ◽  
J. Salinas

2021 ◽  
Vol 17 (11) ◽  
pp. e1009606
Author(s):  
Diego Barra Avila ◽  
Juan R. Melendez-Alvarez ◽  
Xiao-Jun Tian

The Hippo-YAP/TAZ signaling pathway plays a critical role in tissue homeostasis, tumorigenesis, and degeneration disorders. The regulation of YAP/TAZ levels is controlled by a complex regulatory network, where several feedback loops have been identified. However, it remains elusive how these feedback loops contain the YAP/TAZ levels and maintain the system in a healthy physiological state or trap the system in pathological conditions. Here, a mathematical model was developed to represent the YAP/TAZ regulatory network. Through theoretical analyses, three distinct states that designate the one physiological and two pathological outcomes were found. The transition from the physiological state to the two pathological states is mechanistically controlled by coupled bidirectional bistable switches, which are robust to parametric variation and stochastic fluctuations at the molecular level. This work provides a mechanistic understanding of the regulation and dysregulation of YAP/TAZ levels in tissue state transitions.


Genes ◽  
2017 ◽  
Vol 8 (10) ◽  
pp. 274 ◽  
Author(s):  
Ming Zhu ◽  
Min Zhang ◽  
Lijuan Xing ◽  
Wenzong Li ◽  
Haiyang Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document