scholarly journals Transcriptional response of Erwinia amylovora to copper shock: in vivo role of the copA gene

2017 ◽  
Vol 19 (1) ◽  
pp. 169-179 ◽  
Author(s):  
Begoña Águila-Clares ◽  
Luisa F. Castiblanco ◽  
José Miguel Quesada ◽  
Ramón Penyalver ◽  
Juan Carbonell ◽  
...  
2006 ◽  
Vol 17 (10) ◽  
pp. 4400-4410 ◽  
Author(s):  
Michael Thorsen ◽  
Yujun Di ◽  
Carolina Tängemo ◽  
Montserrat Morillas ◽  
Doryaneh Ahmadpour ◽  
...  

Arsenic is widely distributed in nature and all organisms possess regulatory mechanisms to evade toxicity and acquire tolerance. Yet, little is known about arsenic sensing and signaling mechanisms or about their impact on tolerance and detoxification systems. Here, we describe a novel role of the S. cerevisiae mitogen-activated protein kinase Hog1p in protecting cells during exposure to arsenite and the related metalloid antimonite. Cells impaired in Hog1p function are metalloid hypersensitive, whereas cells with elevated Hog1p activity display improved tolerance. Hog1p is phosphorylated in response to arsenite and this phosphorylation requires Ssk1p and Pbs2p. Arsenite-activated Hog1p remains primarily cytoplasmic and does not mediate a major transcriptional response. Instead, hog1Δ sensitivity is accompanied by elevated cellular arsenic levels and we demonstrate that increased arsenite influx is dependent on the aquaglyceroporin Fps1p. Fps1p is phosphorylated on threonine 231 in vivo and this phosphorylation critically affects Fps1p activity. Moreover, Hog1p is shown to affect Fps1p phosphorylation. Our data are the first to demonstrate Hog1p activation by metalloids and provides a mechanism by which this kinase contributes to tolerance acquisition. Understanding how arsenite/antimonite uptake and toxicity is modulated may prove of value for their use in medical therapy.


1994 ◽  
Vol 14 (8) ◽  
pp. 5175-5181
Author(s):  
C Chang ◽  
J D Gralla

The role of chromatin in mounting a synergistic transcriptional response to GAL4-VP16 was investigated. Strong synergy was observed when chromatin templates were used in vitro. The synergy was severely reduced when naked DNA templates were transcribed. In vivo synergy was strong when nonreplicating templates were used. However, the use of replicating templates, which involved transient disruptions of chromatin, led to strong reductions in synergy. In both of these low-synergy responses, transcription levels were high. We infer that strong synergy has a requirement for chromatin that may be understood in terms of the competition between multiple activator molecules and histone cores for promoter DNA.


1994 ◽  
Vol 14 (8) ◽  
pp. 5175-5181 ◽  
Author(s):  
C Chang ◽  
J D Gralla

The role of chromatin in mounting a synergistic transcriptional response to GAL4-VP16 was investigated. Strong synergy was observed when chromatin templates were used in vitro. The synergy was severely reduced when naked DNA templates were transcribed. In vivo synergy was strong when nonreplicating templates were used. However, the use of replicating templates, which involved transient disruptions of chromatin, led to strong reductions in synergy. In both of these low-synergy responses, transcription levels were high. We infer that strong synergy has a requirement for chromatin that may be understood in terms of the competition between multiple activator molecules and histone cores for promoter DNA.


2004 ◽  
Vol 24 (1) ◽  
pp. 407-419 ◽  
Author(s):  
Yuhong Shen ◽  
Karni Schlessinger ◽  
Xuejun Zhu ◽  
Eric Meffre ◽  
Fred Quimby ◽  
...  

ABSTRACT A large number of extracellular polypeptides bound to their cognate receptors activate the transcription factor STAT3 by phosphorylation of tyrosine 705. Supplemental activation occurs when serine 727 is also phosphorylated. STAT3 deletion in mice leads to embryonic lethality. We have produced mice with alanine substituted for serine 727 in STAT3 (the SA allele) to examine the function of serine 727 phosphorylation in vivo. Embryonic fibroblasts from SA/SA mice had ∼50% of the transcriptional response of wild-type cells. However, SA/SA mice were viable and grossly normal. STAT3 wild-type/null (+/−) animals were also normal and were interbred with SA/SA mice to study SA/− mice. The SA/− mice progressed through gestation, showing 10 to 15% reduced birth weight, three-fourths died soon after birth, and the SA/− survivors reached only 50 to 60% of normal size at 1 week of age. The lethality and decreased growth were accompanied by altered insulin-like growth factor 1 (IGF-1) levels in serum, establishing a role for the STAT3 serine phosphorylation acting through IGF-1 in embryonic and perinatal growth. The SA/− survivors have decreased thymocyte number associated with increased apoptosis, but unexpectedly normal STAT3-dependent liver acute phase response. These animals offer the opportunity to study defined reductions in the transcriptional capacity of a widely used signaling pathway.


Cancers ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 93 ◽  
Author(s):  
Ines Garces de los Fayos Alonso ◽  
Huan-Chang Liang ◽  
Suzanne Turner ◽  
Sabine Lagger ◽  
Olaf Merkel ◽  
...  

The Activator Protein-1 (AP-1) transcription factor (TF) family, composed of a variety of members including c-JUN, c-FOS and ATF, is involved in mediating many biological processes such as proliferation, differentiation and cell death. Since their discovery, the role of AP-1 TFs in cancer development has been extensively analysed. Multiple in vitro and in vivo studies have highlighted the complexity of these TFs, mainly due to their cell-type specific homo- or hetero-dimerization resulting in diverse transcriptional response profiles. However, as a result of the increasing knowledge of the role of AP-1 TFs in disease, these TFs are being recognized as promising therapeutic targets for various malignancies. In this review, we focus on the impact of deregulated expression of AP-1 TFs in CD30-positive lymphomas including Classical Hodgkin Lymphoma and Anaplastic Large Cell Lymphoma.


Author(s):  
W.A. Jacob ◽  
R. Hertsens ◽  
A. Van Bogaert ◽  
M. De Smet

In the past most studies of the control of energy metabolism focus on the role of the phosphorylation potential ATP/ADP.Pi on the regulation of respiration. Studies using NMR techniques have demonstrated that the concentrations of these compounds for oxidation phosphorylation do not change appreciably throughout the cardiac cycle and during increases in cardiac work. Hence regulation of energy production by calcium ions, present in the mitochondrial matrix, has been the object of a number of recent studies.Three exclusively intramitochondnal dehydrogenases are key enzymes for the regulation of oxidative metabolism. They are activated by calcium ions in the low micromolar range. Since, however, earlier estimates of the intramitochondnal calcium, based on equilibrium thermodynamic considerations, were in the millimolar range, a physiological correlation was not evident. The introduction of calcium-sensitive probes fura-2 and indo-1 made monitoring of free calcium during changing energy metabolism possible. These studies were performed on isolated mitochondria and extrapolation to the in vivo situation is more or less speculative.


2020 ◽  
Vol 64 (2) ◽  
pp. 251-261
Author(s):  
Jessica E. Fellmeth ◽  
Kim S. McKim

Abstract While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


2016 ◽  
Vol 86 (3-4) ◽  
pp. 127-151 ◽  
Author(s):  
Zeshan Ali ◽  
Zhenbin Wang ◽  
Rai Muhammad Amir ◽  
Shoaib Younas ◽  
Asif Wali ◽  
...  

While the use of vinegar to fi ght against infections and other crucial conditions dates back to Hippocrates, recent research has found that vinegar consumption has a positive effect on biomarkers for diabetes, cancer, and heart diseases. Different types of vinegar have been used in the world during different time periods. Vinegar is produced by a fermentation process. Foods with a high content of carbohydrates are a good source of vinegar. Review of the results of different studies performed on vinegar components reveals that the daily use of these components has a healthy impact on the physiological and chemical structure of the human body. During the era of Hippocrates, people used vinegar as a medicine to treat wounds, which means that vinegar is one of the ancient foods used as folk medicine. The purpose of the current review paper is to provide a detailed summary of the outcome of previous studies emphasizing the role of vinegar in treatment of different diseases both in acute and chronic conditions, its in vivo mechanism and the active role of different bacteria.


Sign in / Sign up

Export Citation Format

Share Document