Role of western blot assay for the diagnosis of histoplasmosis inAIDSpatients from a National Institute of Infectious Diseases in Rio de Janeiro, Brazil

Mycoses ◽  
2019 ◽  
Vol 62 (3) ◽  
pp. 261-267 ◽  
Author(s):  
Marcos Abreu Almeida ◽  
Lisandra Serra Damasceno ◽  
Cláudia Vera Pizzini ◽  
Mauro de Medeiros Muniz ◽  
Rodrigo Almeida‐Paes ◽  
...  
2022 ◽  
Vol 67 (4) ◽  
pp. 163-169
Author(s):  
Yin Wu ◽  
Darong Yang ◽  
Guo-Yun Chen

Siglecs, membrane-bound lectins of the sialic acid-binding immunoglobulin superfamily, inhibit immune responses by recruiting tyrosine phosphatases (e.g., SHP-1 and SHP-2) through their cytoplasmic immunoreceptor tyrosine-based inhibition motif (ITIM) domain. The role of Siglecs in infection has been extensively studied, but downstream signaling through the ITIM domain remains unclear. Here, we used a GST pull-down assay to identify additional proteins associated with the ITIM domain during bacterial infection. Gdi2 bound to ITIM under normal homeostasis, but Rab1a was recruited to ITIM during bacterial infection. Western blot analysis confirmed the presence of SHP-1 and SHP-2 in eluted ITIM-associated proteins under normal homeostasis. We confirmed the association of ITIM with Gdi2 or Rab1a by transfection of corresponding expression vectors in 293T cells followed by immunoprecipitation-western blot assay. Thus, ITIM’s role in the inhibition of the immune response during bacterial infection may be regulated by interaction with Gdi2 and Rab1a in addition to SHP-1 and SHP-2.


2020 ◽  
Author(s):  
Ming WAN ◽  
Fu-min Zhang ◽  
Peng-cheng Kang ◽  
Xing-ming Jiang ◽  
yunfu cui

Abstract Background MicroRNAs (miRNAs) are abnormally expressed in human tumors, including cholangiocarcinoma (CCA). miR-27a-3p was observed up-regulated in CCA, but its functions in CCA are largely unknown.Methods CCK8 assay, Colony formation assays and Ki-67 staining was employed to detect the cell growth. The autophagy and proliferation relative-protein analyzed by western blot. The immunofluorescence staining was applied to analyze the expression level of LC3 I/II. Tumor xenografts was used to test the role of miR-27a-3p. Luciferase reporter assay, western bolt and qRT-PCR showed the relationship between miR-27a-3p and ING5.Results miR-27a-3p expression was increased in human CCA tissues. Inhibition of miR-27a-3p suppressed the proliferative capacity of CCA cells, silencing of miR-27a-3p dramatically induced cell death and suppressed tumor growth in vivo. The proteins, such as Beclin-1, p62, p21, p-p53, CDK4 and CDK6, were decreased upon miR-27a-3p inhibitor transfection. Western blot assay and immunofluorescence analysis were showed the induced-autophagy after transfecting with miR-27a-3p or inhibitor of growth family 5 (ING5) in RBE. ING5 as a direct miR-27a-3p target in CCA. Co-transfect of miR-27a-3p and ING5 can reverse CCA cell death which induced by miR-27a-3p inhibitor alone.Conclusions miR-27a-3p promotes oncogenesis of CCA by triggering autophagy-related cell death by interacting with ING5 directly.


2021 ◽  
Vol 8 ◽  
Author(s):  
Cuiyan Zhou ◽  
Wangsong Shang ◽  
Shan-Kai Yin ◽  
Haibo Shi ◽  
Weihai Ying

Neuroinflammation is a key pathological factor in numerous neurological disorders. Cumulating evidence has indicated critical roles of NAD+/NADH metabolism in multiple major diseases, while the role of malate-aspartate shuttle (MAS) - a major NADH shuttle - in inflammation has remained unclear. In this study we investigated the roles of MAS in LPS-induced neuroinflammation both in vivo and in vitro. Immunofluorescence staining, Western blot assay and Real-time PCR assays were conducted to determine the activation of Iba-1, the protein levels of iNOS and COX2 and the mRNA levels of IL-1β, IL-6, and TNF-α in vivo, showing that both pre-treatment and post-treatment of aminooxyacetic acid (AOAA) - an MAS inhibitor - profoundly decreased the LPS-induced neuroinflammation in mice. BV2 microglia was also used as a cellular model to investigate the mechanisms of this finding, in which such assays as Western blot assay and nitrite assay. Our study further indicated that AOAA produced its effects on LPS-induced microglial activation by its effects on MAS: Pyruvate treatment reversed the effects of AOAA on the cytosolic NAD+/NADH ratio, which also restored the LPS-induced activation of the AOAA-treated microglia. Moreover, the lactate dehydrogenase (LDH) inhibitor GSK2837808A blocked the effects of pyruvate on the AOAA-produced decreases in both the cytosolic NAD+/NADH ratio and LPS-induced microglial activation. Our study has further suggested that AOAA produced inhibition of LPS-induced microglial activation at least partially by decreasing STAT3 phosphorylation. Collectively, our findings have indicated AOAA as a new and effective drug for inhibiting LPS-induced neuroinflammation. Our study has also indicated that MAS is a novel mediator of LPS-induced neuroinflammation due to its capacity to modulate LPS-induced STAT3 phosphorylation, which has further highlighted a critical role of NAD+/NADH metabolism in inflammation.


2020 ◽  
Author(s):  
Jixin Shou ◽  
Haidong Gao ◽  
Sen Cheng ◽  
Bingbing Wang ◽  
Haibo Guan

Abstract Background: LncRNA HOXA-AS2 has been found in the literature to deteriorate glioblastoma. However, its regulatory mechanism is yet to be fully investigated. Our study focused chiefly on the interaction and role of the HOXA-AS2/miR-885-5p/RBBP4 axis in the development of glioblastoma. Methods: qRT-PCR analysis was performed to detect the expression of lncRNA, miRNA and mRNA in glioblastoma tissues and cells. Dual-luciferase assay, RIP assay and RNA pull-down assay were later carried out to reveal the interactions among HOXA-AS2, miR-885-5p and RBBP4. After that, CCK-8 assay, BrdU assay, nude mice xenografting assay, western blot assay, and flow cytometry were carried out to analyze the effect of the HOXA-AS2/miR-885-5p/RBBP4 axis on glioblastoma samples. Results: HOXA-AS2 and RBBP4 were found to be overexpressed in glioblastoma. Experimental results showed that HOXA-AS2 and RBBP4 contributed to the tumorigenesis of glioblastoma cells. However, miR-885-5p was observed to be downregulated in glioblastoma. Findings also indicated that HOXA-AS2 could negatively regulate miR-885-5p, thereby enhancing RBBP4 expression. Conclusion: Overall, HOXA-AS2 promoted the tumorigenesis of glioblastoma by targeting and regulating miR-885-5p to induce the expression of RBBP4.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dijie Zheng ◽  
Shiyu Chen ◽  
Kun Cai ◽  
Linhan Lei ◽  
Chunchen Wu ◽  
...  

Abstract Background Prodigiosin (PG), a natural red pigment produced by numerous bacterial species, has been a eye-catching research point in recent years for its anticancer activity. However, the role of PG in the cancer biology of cholangiocarcinoma (CCA) remains vague. Methods The proliferation of CCA cells was detected by Cell Counting Kit-8(CCK-8), Colony formation assay and 5-ethynyl-2′-deoxyuridine (EdU) assay. Cell apoptosis was evaluated by flow cytometry assay and western blot assay. The effects of PG or SNAREs on cell autophagy were measured by autophagy flux assay and western blot assay. Xenograft mouse models were used to assess the role of PG in CCA cells in vivo. Results PG could inhibit the proliferation and viability of CCA cells in a concentration- and time-dependent manner via suppressing the late stage of autophagy. Mechanistically, PG inhibits the fusion of autophagosomes and lysosomes by blocking STX17 and SNAP29, components of soluble N-ethyl-maleimide-sensitive factor attachment protein receptors (SNAREs)complex. When STX17 and SNAP29 were overexpressed, the inhibitory effect of PG on CCA cells autophagy was relieved. In addition, PG showed obvious inhibitory effects on cancer cell viability but no toxic effects on organs in xenotransplantation models. Conclusion Taken together, our results demonstrated that PG inhibits CCA cell proliferation via suppressing SNAREs-dependent autophagy, implying that PG could be a potential chemotherapy drug for advanced CCA.


2020 ◽  
Author(s):  
Jixin Shou ◽  
Haidong Gao ◽  
Sen Cheng ◽  
Bingbing Wang ◽  
Haibo Guan

Abstract Background: LncRNA HOXA-AS2 has been found in the literature to deteriorate glioblastoma. However, its regulatory mechanism is yet to be fully investigated. Our study focused chiefly on the interaction and role of the HOXA-AS2/miR-885-5p/RBBP4 axis in the development of glioblastoma. Methods: qRT-PCR analysis was performed to detect the expression of lncRNA, miRNA and mRNA in glioblastoma tissues and cells. Dual-luciferase assay, RIP assay and RNA pull-down assay were later carried out to reveal the interactions among HOXA-AS2, miR-885-5p and RBBP4. After that, CCK-8 assay, BrdU assay, nude mice xenografting assay, western blot assay, and flow cytometry were carried out to analyze the effect of the HOXA-AS2/miR-885-5p/RBBP4 axis on glioblastoma samples. Results: HOXA-AS2 and RBBP4 were found to be overexpressed in glioblastoma. Experimental results showed that HOXA-AS2 and RBBP4 contributed to the tumorigenesis of glioblastoma cells. However, miR-885-5p was observed to be downregulated in glioblastoma. Findings also indicated that HOXA-AS2 could negatively regulate miR-885-5p, thereby enhancing RBBP4 expression. Conclusion: Overall, HOXA-AS2 promoted the tumorigenesis of glioblastoma by targeting and regulating miR-885-5p to induce the expression of RBBP4.


2020 ◽  
Vol 3 (1) ◽  
pp. 43-57 ◽  
Author(s):  
Russel J Reiter ◽  
Qiang Ma ◽  
Ramaswamy Sharma

This review summarizes published reports on the utility of melatonin as a treatment for virus-mediated diseases. Of special note are the data related to the role of melatonin in influencing Ebola virus disease. This infection and deadly condition has no effective treatment and the published works documenting the ability of melatonin to attenuate the severity of viral infections generally and Ebola infection specifically are considered. The capacity of melatonin to prevent one of the major complications of an Ebola infection, i.e., the hemorrhagic shock syndrome, which often contributes to the high mortality rate, is noteworthy. Considering the high safety profile of melatonin, the fact that it is easily produced, inexpensive and can be self-administered makes it an attractive potential treatment for Ebola virus pathology.  


2020 ◽  
Vol 19 (17) ◽  
pp. 2108-2119
Author(s):  
Yang Jin ◽  
Li Lv ◽  
Shu-Xiang Ning ◽  
Ji-Hong Wang ◽  
Rong Xiao

Background: Laryngeal Squamous Cell Carcinoma (LSCC) is a malignant epithelial tumor with poor prognosis and its incidence rate increased recently. rLj-RGD3, a recombinant protein cloned from the buccal gland of Lampetra japonica, contains three RGD motifs that could bind to integrins on the tumor cells. Methods: MTT assay was used to detect the inhibitory rate of viability. Giemsa’s staining assay was used to observe the morphological changes of cells. Hoechst 33258 and TUNEL staining assay, DNA ladder assay were used to examine the apoptotic. Western blot assay was applied to detect the change of the integrin signal pathway. Wound-healing assay, migration, and invasion assay were used to detect the mobility of Hep2 cells. H&E staining assay was used to show the arrangement of the Hep2 cells in the solid tumor tissues. Results: In the present study, rLj-RGD3 was shown to inhibit the viability of LSCC Hep2 cells in vitro by inducing apoptosis with an IC50 of 1.23µM. Western blot showed that the apoptosis of Hep2 cells induced by rLj- RGD3 was dependent on the integrin-FAK-Akt pathway. Wound healing, transwells, and western blot assays in vitro showed that rLj-RGD3 suppressed the migration and invasion of Hep2 cells by integrin-FAKpaxillin/ PLC pathway which could also affect the cytoskeleton arrangement in Hep2 cells. In in vivo studies, rLj-RGD3 inhibited the growth, tumor volume, and weight, as well as disturbed the tissue structure of the solid tumors in xenograft models of BALB/c nude mice without reducing their body weights. Conclusion: hese results suggested that rLj-RGD3 is an effective and safe suppressor on the growth and metastasis of LSCC Hep2 cells from both in vitro and in vivo experiments. rLj-RGD3 might be expected to become a novel anti-tumor drug to treat LSCC patients in the near future.


Sign in / Sign up

Export Citation Format

Share Document