Royal jelly may improve sperm characteristics during preservation of rooster semen: Gene expression of antioxidant enzymes

Author(s):  
Atefeh Hadavand Mirzaei ◽  
Hamid Deldar ◽  
Zarbakht Ansari Pirsaraei ◽  
Bahram Shohreh
2017 ◽  
Vol 95 (suppl_4) ◽  
pp. 344-344
Author(s):  
M. R. Fachinello ◽  
A. V. S. Partyka ◽  
A. D. S. Khatlab ◽  
E. Gasparino ◽  
R. V. Nunes ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2679
Author(s):  
Lihuai Yu ◽  
Hongmin Li ◽  
Zhong Peng ◽  
Yuzhu Ge ◽  
Jun Liu ◽  
...  

This study examined the impact of early weaning on antioxidant function in piglets. A total of 40 Duroc × Landrace × Large White, 21-day-old piglets (half male and half female) were divided into suckling groups (SG) and weaning groups (WG). Piglets in WG were weaned at the 21st day, while the piglets in SG continued to get breastfed. Eight piglets from each group were randomly selected and slaughtered at 24th-day (SG3, WG3) and 28th-day old (SG7, WG7). The body weight, liver index, hepatocyte morphology, antioxidant enzymes activity, gene expression of antioxidant enzymes, and Nrf2 signaling in the liver of piglets were measured. The results showed that weaning caused decreased body weight (p < 0.01), lower liver weight (p < 0.01), and decreased the liver organ index (p < 0.05) of piglets. The area and size of hepatocytes in the WG group was smaller than that in the SG group (p < 0.05). We also observed that weaning reduced the activity of superoxide dismutase (SOD) and catalase (CAT) (p < 0.05) in the liver of piglets. Relative to the SG3 group, the gene expression of GSH-Px in liver of WG3 was significantly reduced (p < 0.05). The gene expression of Nrf2 in the SG3 group was higher than that in the WG3 group (p < 0.01). The gene expression of NQO1 in the SG7 group was higher than that in the WG7 group (p < 0.05). In conclusion, weaning resulted in lower weight, slowed liver development, and reduced antioxidant enzymes activity, thereby impairing liver antioxidant function and suppressing piglet growth.


2018 ◽  
Vol 12 (2) ◽  
pp. 74-83
Author(s):  
Hamid Amini ◽  
Mohammad Ali Azarbayjani ◽  
Kamal Azizbeigi Boukani ◽  
◽  
◽  
...  

2005 ◽  
Vol 38 (1) ◽  
pp. 104-111 ◽  
Author(s):  
Mercedes Gómez ◽  
José L. Esparza ◽  
M. Rosa Nogués ◽  
Montserrat Giralt ◽  
Maria Cabré ◽  
...  

Insects ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 122 ◽  
Author(s):  
Paul Winkler ◽  
Frank Sieg ◽  
Anja Buttstedt

One of the first tasks of worker honey bees (Apis mellifera) during their lifetime is to feed the larval offspring. In brief, young workers (nurse bees) secrete a special food jelly that contains a large amount of unique major royal jelly proteins (MRJPs). The regulation of mrjp gene expression is not well understood, but the large upregulation in well-fed nurse bees suggests a tight repression until, or a massive induction upon, hatching of the adult worker bees. The lipoprotein vitellogenin, the synthesis of which is regulated by the two systemic hormones 20-hydroxyecdysone and juvenile hormone, is thought to be a precursor for the production of MRJPs. Thus, the regulation of mrjp expression by the said systemic hormones is likely. This study focusses on the role of 20-hydroxyecdysone by elucidating its effect on mrjp gene expression dynamics. Specifically, we tested whether 20-hydroxyecdysone displayed differential effects on various mrjps. We found that the expression of the mrjps (mrjp1–3) that were finally secreted in large amounts into the food jelly, in particular, were down regulated by 20-hydroxyecdysone treatment, with mrjp3 showing the highest repression value.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 723 ◽  
Author(s):  
Eric Ponnampalam ◽  
Vahid Vahedi ◽  
Khageswor Giri ◽  
Paul Lewandowski ◽  
Joe Jacobs ◽  
...  

This study investigated the effect of dietary manipulations on muscle fatty acid composition, the activities and relative mRNA expressions of antioxidant enzymes and the relationship between muscle enzyme activity or mRNA expression and alpha linolenic acid (ALA) concentration in sheep. Eighty-four lambs blocked on liveweight were randomly allocated to four dietary treatments, lucerne pasture (Lucerne), annual ryegrass pasture (Ryegrass), feedlot pellets (Feedlot) or annual ryegrass plus feedlot pellets (RyeFeedlot). After six weeks of feeding, lambs were slaughtered and within 30 min post-mortem, samples collected from the longissimus lumborum (LL) muscle for RNA isolation and measurement of antioxidant enzyme activities. At 24 h post-mortem, LL samples were collected for determination of fatty acid concentrations. Feedlot treatment decreased ALA, eicosapentaenoic (EPA), docosapentaenoic (DPA) and docosahexaenoic (DHA) concentrations compared with other treatments and increased linoleic acid (LA) and arachidonic acid (AA) compared with Lucerne and Ryegrass (p < 0.001). The activity of Glutathione peroxidase (GPX1, p < 0.001) and Superoxide dismutase (SOD2, p < 0.001) enzymes in the muscle increased with Lucerne compared to other treatments. Lucerne increased muscle gpx1 mRNA expression by 1.74-fold (p = 0.01) and 1.68-fold (p = 0.05) compared with Feedlot and other diets, respectively. The GPX1 (r2 = 0.319, p = 0.002) and SOD2 (r2 = 0.244, p = 0.009) enzyme activities were positively related to ALA. There was a positive linear relationship between muscle gpx1 (r2 = 0.102, p = 0.017) or sod2 (r2 = 0.049, p = 0.09) mRNA expressions and ALA concentration. This study demonstrates that diet can affect concentrations of ALA and other fatty acids as well as change activities and gene expression of antioxidant enzymes in muscle. Increased antioxidant activity may, in turn, have beneficial effects on the performance, health and wellbeing of animals and humans.


2020 ◽  
Vol 8 (11) ◽  
pp. 1807
Author(s):  
Sabine Leroy ◽  
Sergine Even ◽  
Pierre Micheau ◽  
Anne de La Foye ◽  
Valérie Laroute ◽  
...  

Staphylococcus xylosus is found in the microbiota of traditional cheeses, particularly in the rind of soft smeared cheeses. Despite its frequency, the molecular mechanisms allowing the growth and adaptation of S. xylosus in dairy products are still poorly understood. A transcriptomic approach was used to determine how the gene expression profile is modified during the fermentation step in a solid dairy matrix. S. xylosus developed an aerobic metabolism perfectly suited to the cheese rind. It overexpressed genes involved in the aerobic catabolism of two carbon sources in the dairy matrix, lactose and citrate. Interestingly, S. xylosus must cope with nutritional shortage such as amino acids, peptides, and nucleotides, consequently, an extensive up-regulation of genes involved in their biosynthesis was observed. As expected, the gene sigB was overexpressed in relation with general stress and entry into the stationary phase and several genes under its regulation, such as those involved in transport of anions, cations and in pigmentation were up-regulated. Up-regulation of genes encoding antioxidant enzymes and glycine betaine transport and synthesis systems showed that S. xylosus has to cope with oxidative and osmotic stresses. S. xylosus expressed an original system potentially involved in iron acquisition from lactoferrin.


Sign in / Sign up

Export Citation Format

Share Document