scholarly journals Woodland restoration on agricultural land: long‐term impacts on soil quality

2019 ◽  
Vol 27 (6) ◽  
pp. 1381-1392 ◽  
Author(s):  
Frank Ashwood ◽  
Kevin Watts ◽  
Kirsty Park ◽  
Elisa Fuentes‐Montemayor ◽  
Sue Benham ◽  
...  
Author(s):  
Angus J. Beck ◽  
Ruth E. Alcock ◽  
Susan C. Wilson ◽  
Min-Jian Wang ◽  
Simon R. Wild ◽  
...  

2021 ◽  
Author(s):  
Angelique Daniell ◽  
Danél van Tonder

Abstract The improvement of food security strategies on highly degraded soils has become a major challenge for South Africa, as the need to secure food sources for the growing population under harsher climatic conditions. South Africa is one of the many water scarce countries and is label 30th driest country in the world. The ability of a soil to serve as a growth medium for plants is directly influenced by the chemical, physical, and biological parameters but most importantly the fertility of the soil, which is a prominent part of soil quality. Numerous methods exist to enhance and maintain soil quality including the application of fertilizers and the other includes the application of geological materials to the soil. Basalt (commonly referred to as rock dust) application as a soil amendment has been the focus of numerous long-term studies on soil fertility. The results of long-term application of rock dust have indicated a reduction in continuously applying additional amendment, resulting in more sustainable farming operations. When considering South Africa's relative scarcity of available agricultural land and harsh climatic conditions against the increasing demand placed on food production by a growing population combined with water scarcity, it becomes evident that it is necessary to search for new innovative methods to improve soil quality, which is deemed non-arable and/or depleted. The potential for basalt in re-mineralisation and application on non-arable soil in South Africa hold enormous benefits for the economy.


2020 ◽  
Vol 11 (2) ◽  
pp. 77
Author(s):  
Achmad Rachman

<p><strong>Abstrak.</strong> Pertanian konservasi adalah salah satu alternatif model pada praktek pertanian di lahan kering yang dalam jangka panjang dapat meningkatkan produktivitas tanaman, efisiensi usahatani, dan kualitas lingkungan melalui perbaikan kualitas tanah. Tulisan ini membahas prospek penerapan pertanian konservasi untuk meningkatkan kualitas tanah dan produktivitas lahan kering. Model pertanian konservasi lebih menekankan pada perbaikan kandungan bahan organik tanah melalui kombinasi 3 pendekatan yaitu olah tanah minimum, pemulsaan, dan pengaturan pola tanam. Introduksi model pertanian konservasi di negara-negara berkembang seperti Indonesia, yang umumnya lahan pertaniannya berskala sempit (&lt;1 ha) dihadapkan pada masalah perkembangan gulma dan penurunan produktivitas pada fase awal implementasi, dan lahan yang tidak bersih sehingga berpotensi memicu munculnya hama dan penyakit tertentu. Namun demikian, model pertanian konservasi ini berpotensi untuk mengubah lahan kering terdegradasi atau tidak produktif menjadi lahan pertanian produktif dengan efisiensi usahatani yang tinggi. Dengan manfaat jangka panjang tersebut, maka implementasi pertanian konservasi di lahan kering, yang potensinya mencapai 29,4 juta ha, akan meningkatkan secara signifikan kontribusi lahan kering terhadap upaya mempertahankan swasembada pangan nasional dan meningkatkan kesejahteraan petani lahan kering. Diperlukan proses dan modifikasi untuk mengadaptasikan teknologi ini yang disesuaikan dengan karakteristik agroekosistem, konidisi sosial, dan ekonomi lokal setempat, sehingga berbagai kendala adopsi dapat diminimalisir dan manfaat dapat dioptimalkan baik jangka pendek maupun jangka panjang. Selain itu, diperlukan dukungan pemerintah dalam bentuk pelatihan, advokasi, dan bantuan input usahatani untuk meminimalisir resiko kerugian petani terutama pada tahap awal implementasi teknologi.</p><p><em><strong>Abstract.</strong></em> Conservation agriculture is an alternative model to agricultural practices in dryland which in the long term provides a number of benefits including an increase in crop productivity, farm input efficiency and environmental quality through the improvement of soil quality. This paper discusses the prospect for implementing conservation agricultural to improve soil quality and productivity of dryland. The conservation agriculture model emphasizes the improvement of soil organic matter content through a combination of 3 approaches, namely minimum tillage, mulching, and cropping pattern. Introduction of conservation agriculture into developing countries like Indonesia, which are generally small-scale farming (&lt;1 ha), will face a number of obstacles caused by short-term and immediate shortcomings of the technology. These shortcomings include weed development and productivity decline in the early phase of implementation, and the potential to trigger the emergence of certain pests and diseases due to unclean land. However, the practice has the potential to transform degraded or unproductive drylands into more efficient and productive agricultural land. With those long-term benefits of conservation agriculture, its implementation to 29.4 million ha of dryland of Indonesia will boost significantly the contribution of dryland agriculture in sustaining national food self sufficiency and improving the welfare of dryland farmers. Processes and modifications are needed to adapt this practice to suit local agroecosystem, social and local economic characteristics so that various adoption constraints can be minimized and short-term and long-term benefits can be optimized. In addition, government supports are needed in the form of training, advocacy and farm inputs subsidies to minimize the risk of loss of farmers especially in the early stages of technology implementation.</p>


Author(s):  
Amita M Watkar ◽  

Soil, itself means Soul of Infinite Life. Soil is the naturally occurring unconsolidated or loose covering on the earth’s surface. Physical properties depend upon the amount, size, shape, arrangement, and mineral composition of soil particles. It also depends on the organic matter content and pore spaces. Chemical properties depend on the Inorganic and organic matter present in the soil. Soils are the essential components of the environment and foundation resources for nearly all types of land use, besides being the most important component of sustainable agriculture. Therefore, assessment of soil quality and its direction of change with time is an ideal and primary indicator of sustainable agricultural land management. Soil quality indicators refer to measurable soil attributes that influence the capacity of a soil to function, within the limits imposed by the ecosystem, to preserve biological productivity and environmental quality and promote plant, animal and human health. The present study is to assess these soil attributes such as physical and chemical properties season-wise.


2018 ◽  
Vol 69 (10) ◽  
pp. 2608-1612 ◽  
Author(s):  
Alina Dora Samuel ◽  
Simona Bungau ◽  
Delia Mirela Tit ◽  
Carmen Elena Melinte (Frunzulica) ◽  
Lavinia Purza ◽  
...  

Long term productivity and conservation of soils is critical for sustaining agricultural ecosystems. The specific objective of the work reported was to determine the effects of long term application of organic and mineral fertilizers on soil enzyme activity as an index of soil biology and biochemistry. Three key soil enzymes involved in intracellular metabolism of microorganisms and two soil enzymes involved in phosphorus metabolism were selected. Actual and potential dehydrogenase, catalase, acid and alkaline phosphatase activities were determined in the 0-20 cm layer of an eroded soil submitted to a complex fertilization experiment. Results showed that addition of mineral fertilizers to organic (green manure and farmyard manure) fertilizers led to a significant increase in each activity because of increased plant biomass production which upon incorporation stimulates soil biological activity. The enzymatic indicators of soil quality calculated from the values of enzymatic activities depending on the kind of fertilizers showed that by the determination of enzymatic activities valuable information can be obtained regarding fertility status of soils. A weak positive correlation between enzymatic indicators of soil quality and maize yield was established. The yield data demonstrate the superiority of farmyard manure which provided greater stability in crop production. Substantial improvement in soil biological activity due to application of organic fertilizers with mineral fertilizers contribute in maintaining the productivity and soil health.


2018 ◽  
Vol 69 (3) ◽  
pp. 688-692
Author(s):  
Lucian Nita ◽  
Dorin Tarau ◽  
Gheorghe Rogobete ◽  
Simona Nita ◽  
Radu Bertici ◽  
...  

The issue addressed relates to an area of 1891694 ha of which 1183343 ha are agricultural land (62, 56) located in the south-west of Romania and refer to the use of soil chemical and physical properties as an acceptor for certain crop systems, with minimal undesirable effects both for plants to be grown, as well as soil characteristics and groundwater surface quality. It is therefore necessary on a case-by-case basis, measure stoc or rect the acidic reaction by periodic or alkaline calculations, the improvement of plant nutrition conditions through ameliorative fertilization and the application of measures to improve the physical state, sufficient justification for the need to develop short and long term strategies for the protection and conservation of edifying factors and the need to respect the frequency of field and laboratory investigations at all 8x8 km grids of the National Soil-Grounds Monitoring System (organized by I.C.P.A.) and completing it with the relevant pedological and agrochemical studies.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 211
Author(s):  
Tharani Gopalakrishnan ◽  
Lalit Kumar

Soil salinity is a serious threat to coastal agriculture and has resulted in a significant reduction in agricultural output in many regions. Jaffna Peninsula, a semi-arid region located in the northern-most part of Sri Lanka, is also a victim of the adverse effects of coastal salinity. This study investigated long-term soil salinity changes and their link with agricultural land use changes, especially paddy land. Two Landsat images from 1988 and 2019 were used to map soil salinity distribution and changes. Another set of images was analyzed at four temporal periods to map abandoned paddy lands. A comparison of changes in soil salinity with abandoned paddy lands showed that abandoned paddy lands had significantly higher salinity than active paddy lands, confirming that increasing salts owing to the high levels of sea water intrusion in the soils, as well as higher water salinity in wells used for irrigation, could be the major drivers of degradation of paddy lands. The results also showed that there was a dramatic increase in soil salinity (1.4-fold) in the coastal lowlands of Jaffna Peninsula. 64.6% of the salinity-affected land was identified as being in the extreme saline category. In addition to reducing net arable lands, soil salinization has serious implications for food security and the livelihoods of farmers, potentially impacting the regional and national economy.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


Sign in / Sign up

Export Citation Format

Share Document