scholarly journals Challenges of Membrane Technology in Biorefineries

Author(s):  
Lukka Thuyavan Yogarathinam ◽  
Ahmad Fauzi Ismail ◽  
Pei Sean Goh ◽  
Arthanareeswaran Gangasalam

Membrane separation processes have been deployed for downstream applications in biorefineries. This article discusses the challenges of membrane technology in purification of biofuels such as bioethanol, biodiesel and biogas. The significance of membrane technology are discussed towards the fractionation of lignocellulosic biomass for biofuel production.  The membrane reactors for biodiesel production were also studied. Limitation with respect to each individual processes on biofuel purification were also reported. The major limitation in membrane separation are membrane fouling and concentration polarization. Membrane engineering and process optimization are the viable tools to enhance the performance of membrane. Recently, inorganic nanofillers has significant control in alteration of polymeric membrane characteristics for the improvement of permeability and selectivity. This article would be an insight for researchers to understand the challenges of biorefinery membrane separation.

2017 ◽  
Vol 23 (2) ◽  
pp. 218-230 ◽  
Author(s):  
Xiaoying Zhu ◽  
Renbi Bai

Background: Bioactive compounds from various natural sources have been attracting more and more attention, owing to their broad diversity of functionalities and availabilities. However, many of the bioactive compounds often exist at an extremely low concentration in a mixture so that massive harvesting is needed to obtain sufficient amounts for their practical usage. Thus, effective fractionation or separation technologies are essential for the screening and production of the bioactive compound products. The applicatons of conventional processes such as extraction, distillation and lyophilisation, etc. may be tedious, have high energy consumption or cause denature or degradation of the bioactive compounds. Membrane separation processes operate at ambient temperature, without the need for heating and therefore with less energy consumption. The “cold” separation technology also prevents the possible degradation of the bioactive compounds. The separation process is mainly physical and both fractions (permeate and retentate) of the membrane processes may be recovered. Thus, using membrane separation technology is a promising approach to concentrate and separate bioactive compounds. Methods: A comprehensive survey of membrane operations used for the separation of bioactive compounds is conducted. The available and established membrane separation processes are introduced and reviewed. Results: The most frequently used membrane processes are the pressure driven ones, including microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF). They are applied either individually as a single sieve or in combination as an integrated membrane array to meet the different requirements in the separation of bioactive compounds. Other new membrane processes with multiple functions have also been developed and employed for the separation or fractionation of bioactive compounds. The hybrid electrodialysis (ED)-UF membrane process, for example has been used to provide a solution for the separation of biomolecules with similar molecular weights but different surface electrical properties. In contrast, the affinity membrane technology is shown to have the advantages of increasing the separation efficiency at low operational pressures through selectively adsorbing bioactive compounds during the filtration process. Conclusion: Individual membranes or membrane arrays are effectively used to separate bioactive compounds or achieve multiple fractionation of them with different molecule weights or sizes. Pressure driven membrane processes are highly efficient and widely used. Membrane fouling, especially irreversible organic and biological fouling, is the inevitable problem. Multifunctional membranes and affinity membranes provide the possibility of effectively separating bioactive compounds that are similar in sizes but different in other physical and chemical properties. Surface modification methods are of great potential to increase membrane separation efficiency as well as reduce the problem of membrane fouling. Developing membranes and optimizing the operational parameters specifically for the applications of separation of various bioactive compounds should be taken as an important part of ongoing or future membrane research in this field.


2017 ◽  
Vol 34 (1) ◽  
Author(s):  
Rakesh Baghel ◽  
Sushant Upadhyaya ◽  
Kailash Singh ◽  
Satyendra P. Chaurasia ◽  
Akhilendra B. Gupta ◽  
...  

AbstractThe main aim of this article is to provide a state-of-the-art review of the experimental studies on vacuum membrane distillation (VMD) process. An introduction to the history of VMD is carried out along with the other membrane distillation configurations. Recent developments in process, characterization of membrane, module design, transport phenomena, and effect of operating parameters on permeate flux are discussed for VMD in detail. Several heat and mass transfer correlations obtained by various researchers for different VMD modules have been discussed. The impact of membrane fouling with its control in VMD is discussed in detail. In this paper, temperature polarization coefficient and concentration polarization coefficient are elaborated in detail. Integration of VMD with other membrane separation processes/industrial processes have been explained to improve the performance of the system and make it more energy efficient. A critical evaluation of the VMD literature is incorporated throughout this review.


2021 ◽  
Author(s):  
Westphalen Dornelas Camara Heloisa

Membrane separation processes have been more widely applied to industrial activities, especially in water and wastewater treatment. However, there are still challenges associated to the use of membranes. Concentration polarization and fouling can cause significant permeate flux decay during the filtration process, hindering its efficiency and increasing cost. Among many strategies, the combination of membrane filtration with ultrasound (US) application has shown promising results in reducing membrane fouling. The main goal of this research was to identify the effect of US frequency, US power intensity and feed solution concentration on permeate flux during ultrafiltration of simulated latex paint effluent. Maximum increase in permeate flux of 19.7% was obtained by applying 20 kHz and 0.29 W.cm-2 to feed solution with 0.075 wt.% of solid concentration. The effect of feed flow rate was analyzed showing that an increase in feed flowrate is not beneficial to the fouling minimization process. Overall, the application of US improves permeate flux by reducing fouling of ultrafiltration polymeric membrane.


The inevitable decline of membrane performance in membrane separation processes can be optimized through a good understanding of the mass transfer phenomenon and the transport resistances involved in the operation. Thus, this chapter focused on the discussions of mass transfer mechanisms and models in membrane separation based on several types of driving forces. This includes the pressure from a mechanical operation, partial pressure, osmotic pressure, concentration, and also thermal gradients. The chapter elaborates on the transport resistances in membrane resulting from membrane fouling and concentration polarization. The author hopes that readers, especially engineers and technical operators, gain a deep understanding and comprehensive knowledge regarding the theories and are able to utilize the knowledge to optimize the membrane operation.


Membranes ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 166
Author(s):  
Bongani Michael Xaba ◽  
Sekomeng Johannes Modise ◽  
Bamidele Joseph Okoli ◽  
Mzimkhulu Ephraim Monapathi ◽  
Simphiwe Nelana

Membrane separation processes tender a capable option for energy-demanding separation processes. Nanofiltration (NF) and reverse osmosis (RO) membranes are among the most explored, with a latent use in the chemical industry. In this study, four commercial membranes (NF90, NF270, BW30, and XLE) were investigated for their applicability based on the key structural performance characteristics in the recycling of Pd-based catalysts from Heck coupling post-reaction mixture. Pure water and organic solvent permeabilities, uncharged solute permeability, swelling, and catalyst rejection studies of the membranes were conducted as well as the morphological characterization using Fourier transform infrared, field emission gun scanning electron microscopy, and atomic force microscopy. Characterization results showed trends consistent with the manufactures’ specifications. Pure water and organic solvent fluxes generally followed the trend NF270 > NF90 > BW30 > XLE, with the solvent choice playing a major role in the separation process. Pd(PPh3)2Cl2 was well rejected by almost all membranes in 2-propanol; however, XLE rejects Pd(OAc)2 better at high pressure in acetonitrile. Our study, therefore, revealed that the separation and reuse of the two catalysts by NF90 at 10 bar resulted in 97% and 49% product yields with 52% and 10% catalyst retention for Pd(OAc)2 while Pd(PPh3)2Cl2. gave 87% and 6% yields with 58% and 36% catalyst retention in the first and second cycles, respectively. Considering, the influence of membrane–solute interactions in Pd-catalyst rejection, a careful selection of the polymeric membrane and solvent, a satisfactory separation, and recovery can be achieved.


2014 ◽  
Vol 1010-1012 ◽  
pp. 729-732
Author(s):  
Peng Wang ◽  
Yan He Han ◽  
Jia Qing Chen ◽  
Xiao Fei Zhang

Due to the concentration polarization and membrane fouling, the application of conventional membrane separation technology is restricted. In order to reduce the concentration polarization and membrane fouling, the shear-enhanced process has become the focus of the current membrane technology. The shear-enhanced processes contain chiefly rotary tubular shear-enhanced process, rotary disc shear-enhanced process and vibratory shear-enhanced process. This article introduced the structures and work principles of the three shear-enhanced processes. Meanwhile, the problems and the prospect of the shear-enhanced process were provided in this article.


2021 ◽  
Author(s):  
Westphalen Dornelas Camara Heloisa

Membrane separation processes have been more widely applied to industrial activities, especially in water and wastewater treatment. However, there are still challenges associated to the use of membranes. Concentration polarization and fouling can cause significant permeate flux decay during the filtration process, hindering its efficiency and increasing cost. Among many strategies, the combination of membrane filtration with ultrasound (US) application has shown promising results in reducing membrane fouling. The main goal of this research was to identify the effect of US frequency, US power intensity and feed solution concentration on permeate flux during ultrafiltration of simulated latex paint effluent. Maximum increase in permeate flux of 19.7% was obtained by applying 20 kHz and 0.29 W.cm-2 to feed solution with 0.075 wt.% of solid concentration. The effect of feed flow rate was analyzed showing that an increase in feed flowrate is not beneficial to the fouling minimization process. Overall, the application of US improves permeate flux by reducing fouling of ultrafiltration polymeric membrane.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1327
Author(s):  
Nour AlSawaftah ◽  
Waad Abuwatfa ◽  
Naif Darwish ◽  
Ghaleb Husseini

Membrane-based separation has gained increased popularity over the past few decades, particularly reverse osmosis (RO). A major impediment to the improved performance of membrane separation processes, in general, is membrane fouling. Fouling has detrimental effects on the membrane’s performance and integrity, as the deposition and accumulation of foulants on its surface and/or within its pores leads to a decline in the permeate flux, deterioration of selectivity, and permeability, as well as a significantly reduced lifespan. Several factors influence the fouling-propensity of a membrane, such as surface morphology, roughness, hydrophobicity, and material of fabrication. Generally, fouling can be categorized into particulate, organic, inorganic, and biofouling. Efficient prediction techniques and diagnostics are integral for strategizing control, management, and mitigation interventions to minimize the damage of fouling occurrences in the membranes. To improve the antifouling characteristics of RO membranes, surface enhancements by different chemical and physical means have been extensively sought after. Moreover, research efforts have been directed towards synthesizing membranes using novel materials that would improve their antifouling performance. This paper presents a review of the different membrane fouling types, fouling-inducing factors, predictive methods, diagnostic techniques, and mitigation strategies, with a special focus on RO membrane fouling.


Sign in / Sign up

Export Citation Format

Share Document