A Review of Membrane Separation Process Enhanced by Shearing Force

2014 ◽  
Vol 1010-1012 ◽  
pp. 729-732
Author(s):  
Peng Wang ◽  
Yan He Han ◽  
Jia Qing Chen ◽  
Xiao Fei Zhang

Due to the concentration polarization and membrane fouling, the application of conventional membrane separation technology is restricted. In order to reduce the concentration polarization and membrane fouling, the shear-enhanced process has become the focus of the current membrane technology. The shear-enhanced processes contain chiefly rotary tubular shear-enhanced process, rotary disc shear-enhanced process and vibratory shear-enhanced process. This article introduced the structures and work principles of the three shear-enhanced processes. Meanwhile, the problems and the prospect of the shear-enhanced process were provided in this article.

2017 ◽  
Vol 23 (2) ◽  
pp. 218-230 ◽  
Author(s):  
Xiaoying Zhu ◽  
Renbi Bai

Background: Bioactive compounds from various natural sources have been attracting more and more attention, owing to their broad diversity of functionalities and availabilities. However, many of the bioactive compounds often exist at an extremely low concentration in a mixture so that massive harvesting is needed to obtain sufficient amounts for their practical usage. Thus, effective fractionation or separation technologies are essential for the screening and production of the bioactive compound products. The applicatons of conventional processes such as extraction, distillation and lyophilisation, etc. may be tedious, have high energy consumption or cause denature or degradation of the bioactive compounds. Membrane separation processes operate at ambient temperature, without the need for heating and therefore with less energy consumption. The “cold” separation technology also prevents the possible degradation of the bioactive compounds. The separation process is mainly physical and both fractions (permeate and retentate) of the membrane processes may be recovered. Thus, using membrane separation technology is a promising approach to concentrate and separate bioactive compounds. Methods: A comprehensive survey of membrane operations used for the separation of bioactive compounds is conducted. The available and established membrane separation processes are introduced and reviewed. Results: The most frequently used membrane processes are the pressure driven ones, including microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF). They are applied either individually as a single sieve or in combination as an integrated membrane array to meet the different requirements in the separation of bioactive compounds. Other new membrane processes with multiple functions have also been developed and employed for the separation or fractionation of bioactive compounds. The hybrid electrodialysis (ED)-UF membrane process, for example has been used to provide a solution for the separation of biomolecules with similar molecular weights but different surface electrical properties. In contrast, the affinity membrane technology is shown to have the advantages of increasing the separation efficiency at low operational pressures through selectively adsorbing bioactive compounds during the filtration process. Conclusion: Individual membranes or membrane arrays are effectively used to separate bioactive compounds or achieve multiple fractionation of them with different molecule weights or sizes. Pressure driven membrane processes are highly efficient and widely used. Membrane fouling, especially irreversible organic and biological fouling, is the inevitable problem. Multifunctional membranes and affinity membranes provide the possibility of effectively separating bioactive compounds that are similar in sizes but different in other physical and chemical properties. Surface modification methods are of great potential to increase membrane separation efficiency as well as reduce the problem of membrane fouling. Developing membranes and optimizing the operational parameters specifically for the applications of separation of various bioactive compounds should be taken as an important part of ongoing or future membrane research in this field.


Author(s):  
Lukka Thuyavan Yogarathinam ◽  
Ahmad Fauzi Ismail ◽  
Pei Sean Goh ◽  
Arthanareeswaran Gangasalam

Membrane separation processes have been deployed for downstream applications in biorefineries. This article discusses the challenges of membrane technology in purification of biofuels such as bioethanol, biodiesel and biogas. The significance of membrane technology are discussed towards the fractionation of lignocellulosic biomass for biofuel production.  The membrane reactors for biodiesel production were also studied. Limitation with respect to each individual processes on biofuel purification were also reported. The major limitation in membrane separation are membrane fouling and concentration polarization. Membrane engineering and process optimization are the viable tools to enhance the performance of membrane. Recently, inorganic nanofillers has significant control in alteration of polymeric membrane characteristics for the improvement of permeability and selectivity. This article would be an insight for researchers to understand the challenges of biorefinery membrane separation.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5398
Author(s):  
Yunxia Liu ◽  
Honghai Liu ◽  
Zhongrong Shen

In the field of industrial wastewater treatment, membrane separation technology, as an emerging separation technology, compared with traditional separation technology such as precipitation, adsorption, and ion exchange, has advantages in separation efficiency, low energy consumption, low cost, simple operation, and no secondary pollution. The application has been expanding in recent years, but membrane fouling and other problems have seriously restricted the development of membrane technology. Natural cellulose is one of the most abundant resources in nature. In addition, nanocellulose has characteristics of high strength and specific surface area, surface activity groups, as well as being pollution-free and renewable, giving it a very wide development prospect in many fields, including membrane separation technology. This paper reviews the current status of nanocellulose filtration membrane, combs the widespread types of nanocellulose and its derivatives, and summarizes the current application of cellulose in membrane separation. In addition, for the purpose of nanocellulose filtration membrane in wastewater treatment, nanocellulose membranes are divided into two categories according to the role in filtration membrane: the application of nanocellulose as membrane matrix material and as a modified additive in composite membrane in wastewater treatment. Finally, the advantages and disadvantages of inorganic ceramic filtrations and nanocellulose filtrations are compared, and the application trend of nanocellulose in the filtration membrane direction is summarized and discussed.


2021 ◽  
Vol 25 (2) ◽  
pp. 73-88
Author(s):  
Z. H. Chang ◽  
Y. H. Teow ◽  
S. P. Yeap ◽  
J. Y. Sum

Forward osmosis (FO) is an osmotically driven membrane separation process. It is potentially applied in various industries for nutrient recovery and water reclamation. Although FO showed a lesser fouling tendency than other pressure-driven membrane processes, the solutes in the feed solution would still deposit on the membrane surface, forming a fouling layer that resists water permeation. For that reason, fouling mitigation is a trending issue in the FO process. A better understanding of the fouling mechanism is required before opting for the appropriate strategy to mitigate it. This article describes the fouling mechanism based on different foulant presented in the feed, followed by a method in relieving fouling in the FO process.


2020 ◽  
Vol 81 (2) ◽  
pp. 210-216 ◽  
Author(s):  
Alexandre Giacobbo ◽  
Elisa Veridiani Soares ◽  
Andréa Moura Bernardes ◽  
Maria João Rosa ◽  
Maria Norberta de Pinho

Abstract Concentration polarization is a phenomenon inherent to membrane separation operations and as a precursor of membrane fouling is frequently related to the decrease in the performance of these operations. In the present work, a case-specific mass transfer correlation was developed to assess the concentration polarization when nanofiltration, in different operating conditions, was applied to treat a pharmaceutical wastewater containing atenolol. NF runs with two membranes, two atenolol concentrations and three feed circulating velocities were conducted, and the corresponding experimental mass transfer coefficients were determined using film theory to describe the concentration polarization phenomenon. Higher velocities led to higher mass transfer coefficients and, consequently, lower concentration polarization. These mass transfer coefficients were correlated with the circulating velocity (Re), the solute diffusivity (Sc) and the membrane permeability (LP+) (the membrane is a permeable interface with effect on the concentration profiles developed from the interface towards the bulk feed), yielding the following correlation Sh = 1.98 × 104Re0.5Sc0.33LP+0.32. The good agreement between the calculated and the experimental results makes this correlation a valuable tool for water practitioners to predict and control the concentration polarization during atenolol-rich wastewater treatment by nanofiltration, thereby increasing its productivity and selectivity.


Author(s):  
A Bergen ◽  
P M Wild ◽  
N Djilali ◽  
G W Vickers

A new membrane filtration process which uses the dynamic environment created on board a centrifuge rotor to enhance the performance of the separation process is described. Centrifugal membrane separation (CMS) combines the energy savings associated with centrifugal reverse osmosis (CRO) with the natural alleviation of concentration polarization and fouling due to the dynamic environment. A research centrifuge was constructed to compare the CMS process directly with a conventional process. An experimental investigation was conducted to determine the effects of centripetal and Coriolis acceleration on membrane performance. A description of the apparatus and the experimental results for various membrane orientations are presented. Significant reduction in the fouling rate and virtual elimination of concentration polarization have been shown.


2018 ◽  
Vol 34 (3) ◽  
pp. 341-363 ◽  
Author(s):  
Edyta Rynkowska ◽  
Kateryna Fatyeyeva ◽  
Wojciech Kujawski

Abstract The interest in ionic liquids, particularly in polymerizable ionic liquids, is motivated by their unique properties, such as good thermal stability, negligible vapor pressure, and wide electrochemical window. Due to these features ionic liquids were proposed to be used in the membrane separation technology. The utilization of conventional ionic liquids is, however, limited by their release from the membrane during the given separation process. Therefore, the incorporation of polymerizable ionic liquids may overcome this drawback for the industrial application. This work is a comprehensive overview of the advances of ionic liquid membranes for the separation of various compounds, i.e. gases, organic compounds, and metal ions.


Author(s):  
М.К. Джубари ◽  
Н.В. Алексеева

Многие отрасли промышленности ежедневно производят большие объемы сточных вод, содержащих органические соединения, неорганические соли и взвешенные примеси. Неотъемлемой частью современных промышленных очистных сооружений является система мембранной очистки. Область применения мембранных процессов разделения ограничены рядом требований: отсутствие взвешенных частиц в обрабатываемых водных растворах, имеется ряд ограничений в кислотности и температуре разделяемых растворов. Одной из важнейших задач в обеспечении рентабельности всего процесса обработки является длительный срок службы мембран, которого возможно достичь предотвращением обрастания поверхности мембран. Наиболее распространенным процессом очистки вод является обратноосмотический процесс разделения. В работе рассмотрен процесс осадкообразования на обратноосмотических мембранах, особое внимание уделяется химической очистке. Проведен анализ работ, посвященных вопросу обрастания обратноосмотических мембран в различных растворах. Рассмотрены различные конструкции мембранных элементов, описан механизм переноса через обратноосмотическую мембрану, учитывая явления концентрационной поляризации у поверхности мембраны. Подробно описаны различные способы борьбы с загрязнением мембран в промышленных сточных водах: предварительная обработка, очистка мембран и модификация поверхности. Авторы резюмируют, что состав исходного раствора является важным фактором, влияющим на производительность обратноосмотической установки. Кроме того, предварительная обработка водных растворов перед процессом обратноосмотического разделения приводит к уменьшению обрастания мембранной поверхности и значительно увеличивает срок службы мембранного элемента. Эффективно в качестве процесса предварительной обработки использовать процесс ультрафильтрационного разделения. Many industries produce large volumes of wastewater on a daily basis containing organic compounds, inorganic salts and suspended impurities. An integral part of modern industrial treatment facilities is a membrane cleaning system. The application area of membrane separation processes is limited by a number of requirements: the absence of suspended particles in the treated aqueous solutions, there are a number of limitations in the acidity and temperature of the separated solutions. One of the most important concerns in ensuring the cost-effectiveness of the entire processing process is the long membrane life, which can be achieved by preventing fouling of the membrane surface. The most common water treatment process is the reverse osmosis separation process. The paper considers the process of sedimentation on reverse osmosis membranes, with special attention paid to chemical cleaning. The analysis of works devoted to the issue of fouling of reverse osmosis membranes in various solutions is carried out. Various designs of membrane elements are considered, the mechanism of transfer through a reverse osmosis membrane is described, taking into account the phenomena of concentration polarization at the membrane surface. Various methods for controlling membrane fouling in industrial wastewater are described in detail: pretreatment, membrane cleaning and surface modification. The authors summarize that the composition of the initial solution is an important factor affecting the performance of a reverse osmosis system. In addition, the pretreatment of aqueous solutions before the reverse osmosis separation process leads to a decrease in fouling of the membrane surface and significantly increases the service life of the membrane element. It is effective to use an ultrafiltration separation process as a pretreatment process.


1995 ◽  
Vol 18 (11) ◽  
pp. 924-928
Author(s):  
Satoshi TAKIZAWA ◽  
Kenji FUJITA ◽  
Shinichiro OHGAKI ◽  
Naoyuki KAMIKO ◽  
Masahiro OHTAKI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document