UTILIZATION OF DURIAN PEEL AS POTENTIAL ADSORBENT FOR BISPHENOL A REMOVAL IN AQUOEUS SOLUTION

2015 ◽  
Vol 74 (11) ◽  
Author(s):  
Zainab Mat Lazim ◽  
Tony Hadibarata ◽  
Mohd Hafiz Puteh ◽  
Zulkifli Yusop ◽  
Riry Wirasnita ◽  
...  

This study explored the low-cost adsorbent of durian peel for BPA removal from aqueous solutions. The effect of various operational parameters such as contact time, temperature, concentration, agitation and pH on the adsorption of BPA was investigated using the batch adsorption study. It was found that Durian peel can be used as a low cost adsorbent for the removal of BPA in aqueous solution after treated with sulfuric acid. The effects of morphology, functional groups, and surface area of adsorbent, before and after pretreatment with sulfuric acid and reaction were investigated by using FESEM, FTIR, and BET. The present study indicates that durian peel had removed 69.63% of BPA with adsorption capacity of 4.178 mg/g for 24 hours. The result proved that this treated agricultural waste was promising material as an alternative adsorbent for the removal of BPA from aqueous solution. Kinetic study of the results gave a pseudo-second order type of mechanism while the adsorption characteristics of the adsorbent followed the Langmuir adsorption isotherm.

2015 ◽  
Vol 17 (3) ◽  
pp. 70-77 ◽  
Author(s):  
M. Kumar ◽  
G. Elangovan ◽  
R. Tamilarasan ◽  
G. Vijayakumar ◽  
P.C. Mukeshkumar ◽  
...  

Abstract This article presents the feasibility for the removal of Aniline Blue dye (AB dye) from aqueous solution using a low cost biosorbent material Zizyphus oenoplia seeds. In this study, a batch mode experiments of the adsorption process were carried out as a function of pH, contact time, concentration of dye, adsorbent dosage and temperature. The experimental data were fitted with Freundlich and Langmuir isotherm equations. The feasibility of the isotherm was evaluated with dimensionless separation factor (RL). The kinetic data of sorption process are evaluated by using pseudo-first order and pseudo-second order equations. The mode of diffusion process was evaluated with intra-particle diffusion model. The thermodynamic parameters like change in enthalpy (ΔHº); change in entropy (ΔSº) and Gibbs free energy change (ΔGº) were calculated using Van’t Hoff plot. The biosorbent material was characterized with Fourier Transform Infrared (FTIR) spectroscopy and the morphology was identified with Scanning Electron Microscope (SEM) in before and after adsorption of AB dye.


2019 ◽  
Vol 32 (2) ◽  
pp. 311-316
Author(s):  
Rino Laly Jose ◽  
M.G. Gigimol ◽  
Beena Mathew

N,N-Methylene bis-acrylamide crosslinked poly-N-vinyl pyrrolidone hydrogels were synthesized and binding of the hydrogel with the dye solution was followed spectrophotometrically. The chemical structure and morphology of the hydrogel before and after adsorption of acid black 194 was confirmed by FT-IR and SEM. Effect of various physico-chemical parameters such as concentration, temperature, pH, time and the amount of hydrogel used were investigated by batch adsorption studies. Hydrogel used as adsorbent in this study was characterized by UV-Vis spectrophotometer before and after adsorption of acid black 194. Kinetic studies suggested pseudo second order reaction. Langmuir and Freundlich isotherms were applied on equilibrium adsorption data and found that Freundlich isotherm fit better for the present investigation. N,N-methylene bisacrylamide crosslinked poly-N-vinyl pyrrolidone hydrogel displayed excellent properties for the removal of the azo dye, acid black 194 from aqueous solution.


2012 ◽  
Vol 550-553 ◽  
pp. 1550-1555
Author(s):  
Guo Lan Li ◽  
Song Li ◽  
Deng Liang He ◽  
Jun Liang Du

Using an agricultural waste rapeseed meal (RM) as adsorbent, the adsorption of methylene blue (MB) and malachite green (MG) from aqueous solution has been studied. For this purpose, the adsorption of MB and MG onto the RM with aspects of kinetics, equilibrium and the effect of pH were investigated. The equilibrium experimental data of MB and MG is in well accordance with isotherm equations of Langmuir and Freundlich. And the maximum uptake capacities (qm) of MB and MG were 122 and 78 mg.g-1respectively. It was observed that the adsorption rate of MB and MG onto the RM were very rapid and the adsorption process followed the pseudo-second-order equation. The RM appears as a very prospective adsorbent for the removal of cationic dyes from industrial effluent due to its high uptake, rapid adsorption rate and low cost.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Z. H. Ibrahim ◽  
M. D. Faruruwa

Cola-nut leaf is an agricultural waste which was used in this research as biosorbent for the adsorption of Cd2+and Cr6+ from aqueous solutions. The leaves of cola nut were modified using 0.1 M HCl. Modified cola nut leaves biosorbent showed slightly higher percentage sorption than the unmodified leaves, for both heavy metals with increasing contact time, having greater affinity for Cd2+. The equilibrium sorption data was attained using the batch technique with increased pH (9) and increased adsorbent dose (1 g/25 cm3 of adsorbate) and initial metal concentration. The functional group of cola nut leaves before and after adsorption was determined using Fourier Transform Infrared Spectroscopy (FTIR). Kinetics data were best fitted to a pseudo-second-order model. Equilibrium data were better described by the Temkin isotherm model with a multilayer adsorption capacity. The study showed that leaves of cola nut are a promising biosorbent for Cd2+ and Cr6+ which could be utilized for industrial wastewater remediation.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Seraj Anwar Ansari ◽  
Fauzia Khan ◽  
Anees Ahmad

Cauliflower leaf powder (CLP), a biosorbent prepared from seasonal agricultural crop waste material, has been employed as a prospective adsorbent for the removal of a basic dye, methylene blue (MB) from aqueous solution by the batch adsorption method under varying conditions, namely, initial dye concentration, adsorbent dose, solution pH, and temperature. Characterization of the material by FTIR and SEM indicates the presence of functional groups and rough coarse surface suitable for the adsorption of methylene blue over it. Efforts were made to fit the isotherm data using Langmuir, Freundlich, and Temkin equation. The experimental data were best described by Freundlich isotherm model, with an adsorption capacity of 149.22 mg/g at room temperature. To evaluate the rate of methylene blue adsorption onto CLP, pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were employed. The experimental data were best described by the pseudo-second-order kinetic model. Evaluation of thermodynamic parameters such as changes in enthalpy, entropy, and Gibbs’ free energy showed the feasible, spontaneous, and exothermic nature of the adsorption process. On the basis of experimental results obtained, it may be concluded that the CLP prepared from agricultural waste has considerable potential as low-cost adsorbent in wastewater treatment for the removal of basic dye, MB.


Author(s):  
Buhari Magaji ◽  
Aisha U. Maigari ◽  
Usman A. Abubakar ◽  
Mukhtar M. Sani ◽  
Amina U. Maigari

This study was aimed at using Balanite aegyptiaca seed coats activated carbon (BAAC) as a potential adsorbent to remove safranin dye from aqueous solution. BAAC was prepared from Balanite aegyptiaca seed coats using a one-step procedure with 67.27% yield, 3.23% ash content, 695 m2/g surface area and 203 mg/g iodine number. The FTIR spectroscopy revealed O-H, N-H, C-H, C=C, C-O-H stretching vibrations. The influences of agitation time, initial dye concentration and adsorbent dose were studied in batch experiments at room temperature. The adsorptions were rapid at the first 15 minutes of agitation, with the uptake of 2.746 mg/kg. The adsorption equilibrium was achieved at 90 minutes of agitation. Kinetic studies showed good correlation coefficient for both pseudo-first order and pseudo-second-order kinetics model but fitted well into pseudo-second order kinetic model. The adsorption data fitted well into Langmuir isotherm with correlation coefficient (R2) very close to unity and Langmuir maximum adsorption constant, qm  1.00. Thus, the fitting into Langmuir indicates monolayer coverage on the adsorbents. The results showed that BAAC has the potential to be applied as alternative low-cost adsorbents in the remediation of dye contamination in wastewater.


2019 ◽  
Vol 31 (10) ◽  
pp. 2291-2297
Author(s):  
Kavita Kulkarni ◽  
Anand Kulkarni ◽  
Poonam Bodare

Trichoderma viride mixed with biofertilizer as low cost adsorbent was evaluated for the adsorptive removal of Rhodamine B dye from aqueous solution. To study the effect of contact period, pH, agitation time, temperature, adsorbent amount and initial dye concentration batch adsorption experiment was performed. Kinetic study and adsorption isotherms were used to estimate experimental data and it was found that Freundlich isotherm model and kinetics of pseudo-second-order best fitted to the experimental data. The experimental results and separation factor RL concluded that Trichoderma viride present in biofertilizer can be used as an alternative to costly adsorbents for the removal of Rhodamine B from aqueous solution.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2339 ◽  
Author(s):  
Somaia G. Mohammad ◽  
Sahar M. Ahmed ◽  
Abd El-Galil E. Amr ◽  
Ayman H. Kamel

A facile eco-friendly approach for acetampirid pesticide removal is presented. The method is based on the use of micro- and mesoporous activated carbon (TPAC) as a natural adsorbent. TPAC was synthesized via chemical treatment of tangerine peels with phosphoric acid. The prepared activated carbon was characterized before and after the adsorption process using Fourier- transform infrared (FTIR), X-ray diffraction (XRD), particle size and surface area. The effects of various parameters on the adsorption of acetampirid including adsorbent dose (0.02–0.2 g), pH 2–8, initial adsorbate concentration (10–100 mg/L), contact time (10–300 min) and temperature (25–50 °C) were studied. Batch adsorption features were evaluated using Langmuir and Freundlich isotherms. The adsorption process followed the Langmuir isotherm model with a maximum adsorption capacity of 35.7 mg/g and an equilibration time within 240 min. The adsorption kinetics of acetamiprid was fitted to the pseudo-second-order kinetics model. From the thermodynamics perspective, the adsorption was found to be exothermic and spontaneous in nature. TPAC was successfully regenerated and reused for three consecutive cycles. The results of the presented study show that TPAC may be used as an effective eco-friendly, low cost and highly efficient adsorbent for the removal of acetamiprid pesticides from aqueous solutions.


2018 ◽  
Vol 3 (2) ◽  
pp. 127-142 ◽  
Author(s):  
Ismi M. N. Milla ◽  
Mia A. Syahri ◽  
Endang T. Wahyuni ◽  
Roto Roto ◽  
Dwi Siswanta

waste has been modified by sulfonation using sulfuric acid to form its corresponding sulfonated adsorbent and was further used for removing cadmium ion in its aqueous solution. The effect of the styrofoam weight, sulfuric acid concentration, temperature and time on the sulfonation result was evaluated. The prepared adsorbent was characterized by XRD, FTIR, and SEM. The cadmium ion adsorption was conducted by batch technique, where the kinetic parameters were determined. The research results attribute that the sulfonated styrofoam has been successfully prepared, and the highest sulfonation is exhibited by using 18M of the sulfuric acid, at 60 oC for 6 h with 5 g of styrofoam. The cadmium adsorption by the sulfonated styrofoam fits with the pseudo-second-order and the Langmuir isotherm model, while the native styrofoam follows the intraparticle diffusion mechanism and Freundlich isotherm model. The adsorption capacities of the sulfonated and the native styrofoam are 51.6 mg/g and 7.09 mg/g respectively, and their respective adsorption rate are 8.20 10-3 mg. g-1. min-1 and 26.9 10-3 mg.g-1 min-1/2 .


2020 ◽  
Vol 20 (5) ◽  
pp. 1152
Author(s):  
Azal Shakir Waheeb ◽  
Hassan Abbas Habeeb Alshamsi ◽  
Mohammed Kassim Al-Hussainawy ◽  
Haider Radhi Saud

In the present study, the Myristica fragrans shells (MFS) was used as low-cost bio adsorbent for the removal of Rose Bengal (RB) dye from aqueous solutions. The characteristics of MFS powder were studied before and after adsorption using different techniques such as Fourier transform Infrared spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), BET and BJH surface area analysis, Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Batch adsorption was adopted to evaluate the effect of various parameters on the removal of RB such as; time of contact (5–75 min), initial dye concentration (10–50 mg L–1), adsorbent dose (0.1–1.7 g L–1) and pH (3–12). The results revealed that the coverage of MFS surface by RB molecules involved the formation of ester bond (esterification), and the pore diameter decreased from 190.55 to 2.43 nm when adsorption of RB onto MFS surface occurred. Experimental adsorption data were modelled using isotherm models including Langmuir, Freundlich, and Temkin. Temkin isotherm demonstrated to be the best isothermal model, and the results indicate that the adsorption of Rose Bengal on MFS surface follows pseudo second-order kinetics model. The adsorption of dye at different pH media showed that the esterification process was more preferred in acidic solution.


Sign in / Sign up

Export Citation Format

Share Document