RETROFITTING PERFORMANCE OF REINFORCED CONCRETE ONE WAY SLAB

2016 ◽  
Vol 78 (5-3) ◽  
Author(s):  
Norliyati Mohd Amin ◽  
Nur Aqilah Aziz ◽  
Ilya Joohari ◽  
Anizahyati Alisibramulisi

Cracks in concrete structure have always been a big threat on the strength of the concrete. Crack is one of the common deterioration observed in reinforced concrete beams and slabs. Concrete cracking is a random process, highly variable and influenced by many factors. To restore the structural capacity of the concrete damages, retrofitting and strengthening are required. There are several techniques that are used for retrofitting and strengthening reported in the literature [1], [2], [3]. This paper investigates the strength performance of retrofitting and strengthening methods of reinforced concrete one-way slab. Flexural bending test are performed on three different concrete slab of size 1000 mm x 500 mm x 75 mm. The methods that are used for retrofit are epoxy injection and patching and for the strengthening is lamination of carbon fiber reinforced polymer. The slabs were loaded to a certain stage where the cracks were formed for retrofitting and strengthening procedure. The achieved failure mode and load capacity of the concrete slab were observed. The repaired techniques for restoring and improving the structural capacity of cracked concrete slabs were analyzed. The ultimate load achieved for the epoxy injection laminate was 19.60 kN followed by CFRP laminate and patching that were 17.64 kN and 17.03 kN respectively. While the deflection value for the three specimens were 14.42 mm, 4.49 mm and 7.036 mm.  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 910
Author(s):  
Michał Musiał ◽  
Tomasz Trapko ◽  
Jacek Grosel

This paper presents experimental investigations of reinforced concrete (RC) beams flexurally strengthened with carbon fiber reinforced polymer (CFRP) strips. Seven 3300 mm × 250 mm × 150 mm beams of the same design, with the tension reinforcement ratio of 1.01%, were tested. The beams differed in the way they were strengthened: one of the beams was the reference, two beams were passively strengthened as precracked (series B-I), two beams were passively strengthened as unprecracked (series B-II) and two beams were actively strengthened as unprecracked (series B-III). Moreover, the strengthening parameters differed between the particular series. The parameters were: CFRP strip cross-sectional areas (series B-I, B-II) or prestressing forces (series B-III). The beams were statically loaded, up to the assumed force value, in the three-point bending test and deflections at midspan were registered. After unloading the beams were suspended on flexible ropes (the free-free beam system) and their eigenfrequencies were measured using operational modal analysis (OMA). The static measurements (deflections) and the dynamic measurements (eigenfrequencies) were conducted for the adopted loading steps until failure. Static stiffnesses and dynamic stiffnesses were calculated on the basis of respectively the deflections and the eigenfrequencies. The qualitative and quantitative differences between the parameters are described.


2016 ◽  
Vol 707 ◽  
pp. 51-59 ◽  
Author(s):  
Osama Ahmed Mohamed ◽  
Rania Khattab

The behaviour of reinforced concrete beam strengthened with Carbon Fiber Reinforced Polymer (CFRP) and Glass fiber reinforced polymer GFRP laminates was investigated using finite element models and the results are presented in this paper. The numerical investigation assessed the effect of the configuration of FRP strengthening laminates on the behaviour of concrete beams. The load-deflection behaviour, and ultimate load of strengthened beam were compared to those of un-strengthened concrete beams. It was shown that using U-shaped FRP sheets increased the ultimate load. The stiffness of the strengthed beam also increased after first yielding of steel reinforcing bars. At was also observed that strengthening beams with FRP laminates to one-fourth of the beam span, modifies the failure of the beam from shear-controlled near the end of the unstrengthened beam, to flexure-controlled near mid-span. CFRP produced better results compared GFRP in terms of the ability to enhance the behavior of strengthenened reinforced concrete beams.


2019 ◽  
Vol 23 (7) ◽  
pp. 1290-1304
Author(s):  
Yang Yang ◽  
Ze-Yang Sun ◽  
Gang Wu ◽  
Da-Fu Cao ◽  
Zhi-Qin Zhang

This study presents a design method for hybrid fiber-reinforced-polymer-steel-reinforced concrete beams by an optimized analysis of the cross section. First, the relationships among the energy consumption, the bearing capacity, and the reinforcement ratio are analyzed; then, the parameters of the cross section are determined. Comparisons between the available theoretical and experimental results show that the designed hybrid fiber-reinforced-polymer-steel-reinforced concrete beams with a low area ratio between the fiber-reinforced polymer and the steel reinforcement could meet the required carrying capacity and exhibited high ductility.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 234 ◽  
Author(s):  
Yingwu Zhou ◽  
Yaowei Zheng ◽  
Lili Sui ◽  
Biao Hu ◽  
Xiaoxu Huang

Steel corrosion is considered as the main factor for the insufficient durability of concrete structures, especially in the marine environment. In this paper, to further inhibit steel corrosion in a high chloride environment and take advantage of the dual-functional carbon fiber reinforced polymer (CFRP), the impressed current cathodic protection (ICCP) technique was applied to the hybrid-reinforced concrete beam with internally embedded CFRP bars and steel fiber reinforced polymer composite bar (SFCB) as the anode material while the steel bar was compelled to the cathode. The effect of the new ICCP system on the flexural performance of the hybrid-reinforced concrete beam subjected to corrosion was verified experimentally. First, the electricity-accelerated precorrosion test was performed for the steel bar in the hybrid-reinforced beams with a target corrosion ratio of 5%. Then, the dry–wet cycles corrosion was conducted and the ICCP system was activated simultaneously for the hybrid-reinforced concrete beam for 180 days. Finally, the three-point bending experiment was carried out for the hybrid-reinforced concrete beams. The steel bars were taken out from the concrete to quantitatively measure the corrosion ratio after flexural tests. Results showed that the further corrosion of steel bars could be inhibited effectively by the ICCP treatment with the CFRP bar and the SFCB as the anode. Additionally, the ICCP system showed an obvious effect on the flexural behavior of the hybrid-reinforced concrete beams: The crack load and ultimate load, as well as the stiffness, were enhanced notably compared with the beam without ICCP treatment. Compared with the SFCB anode, the ICCP system with the CFRP bar as the anode material was more effective for the hybrid-reinforced concrete beam to prevent the steel corrosion.


2003 ◽  
Vol 30 (6) ◽  
pp. 1081-1088 ◽  
Author(s):  
Mark F Green ◽  
Aaron J.S Dent ◽  
Luke A Bisby

Externally bonded fibre reinforced polymer (FRP) plates and sheets for strengthening and rehabilitating existing reinforced concrete structures have recently received a great deal of attention within the civil engineering community. Many tests have shown the benefits of FRP, but more information is required on their behaviour in cold regions. Twenty-seven small-scale concrete beams (100 mm × 150 mm × 1220 mm) were strengthened with FRP in flexure (and in some cases also in shear), subjected to up to 200 freeze–thaw cycles, and tested to failure in four-point bending. Test results were compared with those predicted by theoretical models and reasonable agreement between the tests and the models was obtained. Current design guidelines for FRP-strengthened beams were compared against the test data and were found to be adequate for the artificially aged beams. The test data also indicated that no significant damage to the glass or carbon FRP-strengthened concrete beams had occurred because of freeze–thaw cycling.Key words: concrete, rehabilitation, fibre reinforced polymers, FRP, beams, freeze–thaw, cold region engineering, flexure, external strengthening.


Sign in / Sign up

Export Citation Format

Share Document