HIGH PURITY MESOPOROUS Γ-AL2O3 FROM KANO KAOLIN IN THE PRESENCE OF POLYETHYLENE GLYCOL 6000 (PEG-6000) SURFACTANT

2017 ◽  
Vol 79 (3) ◽  
Author(s):  
Abdu Muhammad Bello ◽  
Abdul Rahim Yacob ◽  
Kamaluddeen Suleiman Kabo

Mesoporous γ-Al2O3 with large surface area and narrow pore size was synthesized from acid-leachates of calcined kaolin in the presence of polyethylene glycol 6000 (PEG-6000) surfactant at room temperature. The synthesized alumina was characterized by X-ray diffraction (XRD), Nitrogen adsorption-desorption, Fourier transform infra-red spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) with energy-dispersive X-ray analysis (EDX), and thermogravimetric-Derivative thermal analysis (TG-DTA). High-purity mesoporous γ-Al2O3 with large surface area of 365.1 m2/g, narrow pore size distribution centred at 5.3 nm and pore volume of 0.46 cm3/g was obtained at 500 oC. When the calcination temperature has increased to 700 oC, the surface area decreased to 272.9 m2/g. Crystallite size calculated using Scherer’s equation revealed the average size of 4.33 and 4.12 nm for alumina calcined at 500 and 700 oC, respectively. The excellent pore structural properties (high surface area and large pore volume) of the synthesized mesoporous γ-alumina in the present study will allow for higher loading of active catalytic phases, as such it can be used as catalyst support.  

2019 ◽  
Vol 10 ◽  
pp. 2217-2228 ◽  
Author(s):  
B Rabindran Jermy ◽  
Vijaya Ravinayagam ◽  
Widyan A Alamoudi ◽  
Dana Almohazey ◽  
Hatim Dafalla ◽  
...  

The combination of magnetic nanoparticles with a porous silica is a composite that has attracted significant attention for potential multifunctional theranostic applications. In this study, 30 wt % CuFe2O4 was impregnated into a matrix of monodispersed spherical hydrophilic silica (HYPS) nanoparticles through a simple dry impregnation technique. The chemotherapy drug cisplatin was loaded through electrostatic equilibrium adsorption over 24 h in normal saline solution. The presence of cubic spinel CuFe2O4 on HYPS was confirmed through powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and diffuse reflectance UV–vis spectroscopy (DR UV–vis) analysis. The HYPS particles showed a surface area of 170 m2/g, pore size of 8.3 nm and pore volume of 0.35 cm3/g. The cisplatin/CuFe2O4/HYPS nanoformulation showed the accumulation of copper ferrite nanoparticles on the surface and in the pores of HYPS with a surface area of 45 m2/g, pore size of 16 nm and pore volume of 0.18 cm3/g. Transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) mapping analysis showed the presence of homogeneous silica particles with nanoclusters of copper ferrite distributed on the HYPS support. Vibrating sample magnetometry (VSM) analysis of CuFe2O4/HYPS showed paramagnetic behavior with a saturated magnetization value of 7.65 emu/g. DRS UV–vis analysis revealed the functionalization of cisplatin in tetrahedral and octahedral coordination in the CuFe2O4/HYPS composite. Compared to other supports such as mesocellular foam and silicalite, the release of cisplatin using the dialysis membrane technique was found to be superior when CuFe2O4/HYPS was applied as the support. An in vitro experiment was conducted to determine the potential of CuFe2O4/HYPS as an anticancer agent against the human breast cancer cell line MCF-7. The results show that the nanoparticle formulation can effectively target cancerous cells and could be an effective tumor imaging guide and drug delivery system.


2015 ◽  
Vol 3 (9) ◽  
pp. 4799-4802 ◽  
Author(s):  
Ya You ◽  
Wencong Zeng ◽  
Ya-Xia Yin ◽  
Juan Zhang ◽  
Chun-Peng Yang ◽  
...  

A hierarchically micro/mesoporous a-MEGO with a high surface area and pore volume was fabricated as a superior carbon substrate in Li–S batteries.


2020 ◽  
Vol 988 ◽  
pp. 80-86
Author(s):  
Dewa Ngakan Ketut Putra Negara ◽  
Tjokorda Gde Tirta Nindhia ◽  
Lusiana ◽  
I. Made Astika ◽  
Cokorda Istri Putri Kusuma Kencanawati

Activated carbon is a multipurpose material due to its unique properties such as high surface area and pore volume. The reduced carbon source from coal has led to the development of activated carbon from lignocellulosic material. However, there is limited literature reported the use of swat bamboo (Gigantocholoa verticillata) as an activated carbon precursor. In this research, swat bamboo has been converted to activated carbons under different carbonization temperatures of 550, 650, and 750OC and activation durations of 1.5 and 2 h. The results show that at activation time of 1.5 h, increasing carbonization temperature affecting the higher pore volume and surface area gained. The optimal characteristics of activated carbon were obtained at a carbonization temperature of 750OC and activation time of 1.5 h. This due to the activated carbon produced in this condition has the highest pore volume, surface area, and adsorption capacity of 0.138 cm3/g, 135.30 m2/g, and 95.776 cm3/g, respectively. Its average pore diameter was 2.053 nm with fix carbon of 75.26% and C of 76.79%. It has a monomodal pore size distribution with the highest adsorption of 0.056 cm3/g/nm occurred at a pore size of 1.516 nm.


2017 ◽  
Author(s):  
Mozhdeh Mehrabi ◽  
Mehrdad Pasha ◽  
Ali Hassanpour ◽  
Paul W. J. Glover ◽  
Xiaodong Jia

Abstract. Optimisation of gas production from shale gas reservoirs depends critically upon a good understanding of the porosity and pore microstructure of the shale. Conventionally surface area measurements or mercury porosimetry have been used to measure the porosity in gas shales. However, these conventional methods have limited accuracy and only provide a bulk measurement for the samples. More recently, scanning electron micrography (SEM) and Focussed Ion Beam SEM (FIB-SEM) techniques have been applied in an attempt to address these limitations. Unfortunately, these two methods destroy the samples. In this research three-dimensional x-ray micro tomography (XRMT) imaging techniques were used to capture the structure of three samples and also compared to data from mercury porisimetry. The resulting data have been segmented in order to recognize individual pores down to a resolution of about 1 µm. Distributions of pore volume, pore size, pore aspect ratio, surface area to pore volume ratios and pore orientations were calculated from the XRMT data. It was found that the porosity obtained from XRMT measurements is smaller than that obtained using mercury porisimetry, the reason for which might be displacement of kerogen by the high pressures generated in the mercury technique, but is unlikely to be due to both techniques not being able to measure pores smaller that about 900 nm. Pore volume and size distributions showed all of the shales tested in this work to be multimodal with similar major modal values for volume and pore size. The pores also have a range of pore aspect ratios and surface area to pore volumes, including values indicating the presence of significant oblate spheroidal pores where the major axis is up to 330 times bigger than the minor axis. This has implications both for the connectedness of pores and the resultant gas permeability and the effectiveness of gas desorption processes into the gas shale's pores. These high aspect ratio pores were oriented both in dip and azimuth in preferential directions making it likely that the shale gas itself has significant anisotropy both for permeability and in its mechanical properties. Permeabilities calculated from the XRMT distribution data matched very well with permeabilities obtained by scaling considerations and typical values for similar gas shales.


2019 ◽  
Vol 17 (1) ◽  
pp. 963-971
Author(s):  
Ridhawati Thahir ◽  
Abdul Wahid Wahab ◽  
Nursiah La Nafie ◽  
Indah Raya

AbstractThe high surface area of mesoporous silica SBA-15 has been synthesized successfully by hydrothermal treatment with direct addition of PVA, triblock copolymer (P123) as a direct structure agent and tetraethyl orthosilicate (TEOS) as a precursor. The mesoporous silica SBA-15 have been characterized with nitrogen physisorption, scanning electron microscopy, Fourier transformed infrared spectroscopy, and x-ray diffraction. Measurement of nitrogen sorption indicated that with the addition of PVA, the surface area is increased but the pore volume and pore diameter is not significantly. The short time of hydrothermal treatment (20 h) and using x-ray diffraction, showed that the morphological structure of silica SBA-15 can be changed to a orthorhombic crystal system. The result of the FTIR and SEM-EDX characteristic indicated the functional groups and morphology of the SBA-15 with a narrow pore size distribution. The BET method has exhibited the largest surface area 1726 m2/g, pore volume 1.4 cm3/g, and pore diameter 3.2 nm. It can be suggested that the silica mesoporous SBA-15 will have potential application prospect in catalysis, storage, and adsorbent.


2020 ◽  
Vol 861 ◽  
pp. 371-377
Author(s):  
Wilasinee Kingkam ◽  
Sasikarn Nuchdang ◽  
Pipat Laowattanabandit ◽  
Dussadee Rattanaphra

This paper presents the studies on physical and chemical properties of the natural diatomite originating from Mae Tha District, Lampang the northern of Thailand as solid catalyst. The diatomite was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) and nitrogen adsorption-desorption isotherm. The effect of calcination temperature on chemical composition, cyrytalline phase and textural properties of diatomite was also investigated. The XRF results indicated that the diatomite was composed mostly of SiO2, K2O, CaO and MgO. The calcination temperature ranging from 300 to 900 °C had no effect on the crystalline phase of diatiomite. The high surface area and large pore size diameter of diatomite was observed when the calcination temperature was below 900 °C. All the physicochemical results show the existence of SiO2, K2O, CaO and MgO, the high surface area and pore size diameter, indicate that the diatomite could potentially be used to a solid catalyst for biodiesel production.


2015 ◽  
Vol 22 (6) ◽  
Author(s):  
Nazile Ural

AbstractIn this study, the relationships between geotechnical index properties and the pore-size distribution of compacted natural silt and artificial soil mixtures, namely, silt with two different clays and three different clay percentages (10%, 20%, and 40%), were examined and compared. Atterberg’s limit tests, standard compaction tests, mercury intrusion porosimetry, X-ray diffraction, scanning electron microscopy (SEM) analysis, and Brunauer-Emmett-Teller specific surface analysis were conducted. The results show that the liquid limit, the cumulative pore volume, and specific surface area of artificially mixed soils increase with an increase in the percentage of clay. The cumulative pore volume and specific surface area with geotechnical index properties were compared. High correlation coefficients were observed between the specific areas and both the liquid limit and the plasticity index, as well as between the cumulative pore volume and both the clay percentage and the


2016 ◽  
Vol 75 (2) ◽  
pp. 350-357
Author(s):  
Graham Dawson ◽  
Wei Chen ◽  
Luhua Lu ◽  
Kai Dai

The adsorption properties of two nanomorphologies of trititanate, nanotubes (TiNT) and plates (TiNP), prepared by the hydrothermal reaction of concentrated NaOH with different phases of TiO2, were examined. It was found that the capacity for both morphologies towards methylene blue (MB), an ideal pollutant, was extremely high, with the TiNP having a capacity of 130 mg/g, higher than the TiNT, whose capacity was 120 mg/g at 10 mg/L MB concentration. At capacity, the well-dispersed powders deposit on the floor of the reaction vessel. The two morphologies had very different structural and adsorption properties. TiNT with high surface area and pore volume exhibited exothermic monolayer adsorption of MB. TiNP with low surface area and pore volume yielded a higher adsorption capacity through endothermic multilayer adsorption governed by pore diffusion. TiNP exhibited a higher negative surface charge of −23 mV, compared to −12 mV for TiNT. The adsorption process appears to be an electrostatic interaction, with the cationic dye attracted more strongly to the nanoplates, resulting in a higher adsorption capacity and different adsorption modes. We believe this simple, low cost production of high capacity nanostructured adsorbent material has potential uses in wastewater treatment.


2014 ◽  
Vol 11 (5) ◽  
pp. 6815-6844
Author(s):  
S. C. Löhr ◽  
M. J. Kennedy

Abstract. Organic carbon (OC) enrichment in sediments deposited during Oceanic Anoxic Events (OAEs) is commonly attributed to elevated productivity and marine anoxia. We find that OC enrichment in the late Cenomanian aged OAE2 at Demerara Rise was controlled by co-occurrence of anoxic bottom-water, sufficient productivity to saturate available mineral surfaces and variable deposition of high surface area detrital smectite clay. Redox indicators show consistently oxygen-depleted conditions, while a strong correlation between OC concentration and sediment mineral surface area (R2=0.92) occurs across a range of TOC values from 9–33%. X-ray diffraction data indicates intercalation of OC in smectite interlayers while electron, synchrotron infrared and X-ray microscopy show an intimate association between clay minerals and OC, consistent with preservation of OC as organomineral nanocomposites and aggregates rather than discrete, μm-scale pelagic detritus. Since the consistent ratio between TOC and mineral surface area suggests that excess OC relative to surface area is lost, we propose that it is the varying supply of smectite that best explains variable organic enrichment against a backdrop of continuous anoxia, which is conducive to generally high TOC during OAE2 at Demerara Rise. Smectitic clays are unique in their ability to form stable organomineral nanocomposites and aggregates that preserve organic matter, and are common weathering products of continental volcanic deposits. An increased flux of smectite coinciding with high carbon burial is consistent with evidence for widespread volcanism during OAE2, so that organomineral carbon burial may represent a potential feedback to volcanic degassing of CO2.


2017 ◽  
Vol 1 (6) ◽  
pp. 1414-1424 ◽  
Author(s):  
Michael Cox ◽  
Robert Mokaya

Mesoporous carbons (with up to 95% of pore volume from mesopores) with surface area and pore volume of ∼4000 m2 g−1 and ∼3.6 cm3 g−1, respectively, are excellent CO2 absorbers under pre combustion conditions and can store 55 mmol g−1 (i.e., 2.42 g g−1) or 930 g l−1 at 25 °C and 50 bar.


Sign in / Sign up

Export Citation Format

Share Document