scholarly journals Economic efficiency of legume-cereal intercrops in conditions of organic farming

Author(s):  
Jaroslav Jánský ◽  
Jiří Pospíšil

The paper presents economic analysis of growing of legume-cereal intercropping in conditions of organic farming. Results of the analysis are based on data monitoring in chosen organic farms that grow LCI. In the paper there is also compared economic efficiency of LCI grown in organic and conventional farming system. Methodological solution results from costingness and earnings monitoring of LCI production in five chosen organic farms in the period 2007–2008.When evaluating costs existing in individual variants of LCI growing it is necessary to say that the selection of individual machines and machine aggregations represents the most important factor of influencing direct costs, namely with regard to the size of organic farms and to the area of individual field blocks. Under conditions of organic farms, the LCI production is also significantly influenced also by agrotechnical (tillage) operations. As compared with conventional farms, the final yield of both green fodder and grain is lower by 14–38%. Total direct costs per hectare of harvested LCI acreage ranged in case of fodder production from 9.249 CZK to 11.620 CZK per hectare. In case of grain production, the corresponding costs ranged from 8.848 to 9.970 CZK per hectare. In case of LCI, the direct costs of organic farms per unit of production of both fodder and grain consist mainly of material costs, which represent 63–76% and 61–68% of total expenses associated with production of fodder and grain, respectively. These direct costs are influenced also by higher prices of inputs.

Author(s):  
Armands Veveris ◽  
◽  
Armands Puzulis ◽  

Organic farming is experiencing rather rapid development in Europe, including in Latvia. This could be rated from different aspects. The purpose of this article is to assess the economic indicators of the development of organic farming, linking them to conclusions stated in various studies in Latvia and other countries on the diverse economic, social and environmental impact of this type of farming, as well as potential problems. So, theoretical and empirical approaches are combined in this article. The different problems we can state as outcome of the research. The farms concentrate in areas with less favourable conditions for conventional farming. Also, large continuous areas under organic farming often leads to low production value per hectare and do not reach social goals.


2015 ◽  
Vol 30 (2) ◽  
pp. 77-84
Author(s):  
Ivelina Nikolova ◽  
Natalia Georgieva

Four systems of organic farming and a conventional farming system were studied over the period 2012-2014. The organic system trial variants included: I - an organic farming system without any biological products used (growth under natural soil fertility) - Control; II - an organic farming system involving the use of a biological foliar fertilizer and a biological plant growth regulator (Polyversum+Biofa); III - an organic farming system in which a biological insecticide (NeemAzal T/S) was used; IV - an organic farming system including a combination of three organic products: the foliar fertilizer, the plant growth regulator and the bioinsecticide (Polyversum+Biofa+NeemAzal T/S). Variant V represented a conventional farming system in which synthetic products were used in combination (foliar fertilizer, plant growth regulator and insecticide: Masterblend+Flordimex 420+Nurelle D). Treatment of vetch plants with the biological insecticide NeemAzal in combination with Biofa and Polyversum resulted in the lowest density of sucking pests, compared to all other organic farming methods tested (i.e. without NeemAzal, with NeemAzal alone, and its combination with Biofa and Polyversum). The greatest reduction in pest numbers during the vegetation period in that variant was observed in species of the order Thysanoptera (36.0-41.4%), followed by Hemiptera, and the families Aphididae (31.6-40.3%) and Cicadellidae (27.3-28.6%). This combination showed an efficient synergistic interaction and an increase in biological efficacy as compared to individual application of NeemAzal. The highest toxic impact was found against Thrips tabaci, followed by Acyrthosiphon pisum. An analysis of variance regarding the efficacy against the species A. pisum, E. pteridis and T. tabaci showed that type of treatment had the most dominant influence and statistically significant impact.


2021 ◽  
Vol 6 (3) ◽  
pp. 367-372
Author(s):  
Susan Makaju ◽  
Kabita Kurunju

The growing use of chemical pesticides haphazardly and their harmful influence on ecosystem and human health highlight the necessity for safe and sustainable organic production in our time. The article reviews a general overview of organic farming; the impact of organic farming on soil health and climate mitigation in comparison with conventional farming practice in Nepal. The article identifies the problems and possibilities of organic farming to resuscitate the pesticide-dominated conventional practice in Nepal. Organic farming now has been embedded in the natural agriculture policy in Nepal. Organic farming benefits in terms of environmental protection along with better living health. Various governmental and non-governmental bodies, farmers, and individuals are working to promote organic farming in Nepal. With the increase in awareness of health and environmental concerns, the adoption of organic agriculture and the demand for organic agricultural products is increasing. It holds a great prospect in countries like ours where an integrated crop-livestock system is still prevalent in many parts of the country. As a result, an organic farming system in Nepal must be thoroughly investigated and supported through proper regulations and tactics. It is urged to supplant pesticide-based conventional farming with organic farming that leads towards agricultural sustainability for the upcoming generation.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 413 ◽  
Author(s):  
Adam Kleofas Berbeć ◽  
Mariola Staniak ◽  
Beata Feledyn-Szewczyk ◽  
Anna Kocira ◽  
Jarosław Stalenga

In recent years, the European Union has been paying particular attention to the problem of biodiversity loss. The possibilities of its assessment and conservation are included in the latest European Union (EU) policies and reflected in the European Biodiversity Strategy. The biodiversity of weeds in winter cereals in organic and conventional low-input farms in Eastern Poland was investigated during a 3-year period. Significantly more species and larger abundance were found in organic than in conventional farming systems. The biodiversity of these communities was described by Shannon’s diversity and Simpson’s dominance indices, which showed diversity to be well maintained in both farming systems; however, significantly higher Shannon’s index and significantly lower Simpson’s index values were observed in organic farms. Both farming systems were the mainstay of endangered and rare species, as well as some invasive weed species. Weed communities of organic farms were dominated mostly by Setaria pumila and Elymus repens, while conventional farms were dominated by Juncus bufonius and Setaria pumila. The study showed the importance of organic farming systems for biodiversity conservation. It was also shown that low-input (traditional) conventional farms are also beneficial for biodiversity conservation.


Author(s):  
R. Chethan ◽  
R.K. K. Patil ◽  
B. Halappa

A study was carried out to know the response of organic, integrated and conventional farming systems on the diversity of soil meso and macro arthropod populations in the cotton inter cropped with groundnut and pigeonpea at MARS, UAS, Dharwad during kharif -2015-16. The organic farming system has recorded highest meso and macro arthropod population of 21.35 per 100 g of soil and 42.00 per pitfall trap respectively. Cotton intercropped with groundnut has recorded higher population of meso and macro arthropods (15.50 /100 g of soil and 41.26/ pitfall trap, respectively). The seasonal abundance of soil arthropods was high in October (25.89/100g of soil) and least in December (5.78/ 100g of soil) months. The diversity of soil arthropod populations assessed on the Shannon’s index of below ground arthropod populations recorded was highest in organic farming (0.61) and least in conventional farming (0.51) system. Hence, the organic farming system increases abundance and diversity of soil organisms and soil fertility, and it adds large amounts of organic residue inputs, which in turn increases the biological activity in soil.


2003 ◽  
Vol 54 (9) ◽  
pp. 889 ◽  
Author(s):  
J. L. Kitchen ◽  
G. K. McDonald ◽  
K. W. Shepherd ◽  
M. F. Lorimer ◽  
R. D. Graham

Organic farming standards do not allow addition of water-soluble fertilisers and therefore it is likely that growth of organically grown crops will be limited by nutrient availability. However, in marginal rainfall conditions, when growth in conventional systems is limited by water availability, yields of organically grown crops could be comparable with those conventionally grown. Similarly, micronutrient-efficient plant varieties could be expected to perform comparatively better under organic farming conditions than they do in conventional systems, when compared with micronutrient-inefficient varieties.In this study, biomass and grain production of wheat from certified organic farming systems were compared with neighbouring conventional farming systems in 'across the fence' field trials in 1 moderate and 2 marginal rainfall areas of South Australia. Wheat varieties compared included 2 old wheat varieties developed under relatively low-input conditions (Baroota Wonder and Dirk-48) and varieties shown to be micronutrient-efficient (Janz and Trident) and inefficient (Yallaroi).The organic farming systems produced significantly less biomass than the conventional farming systems at late tillering in both the moderate and marginal rainfall areas. Grain yield was variable, but significantly lower in the organic farming system for 11 of the 14 comparisons. None of the varieties showed an adaptive advantage for 1 farming system over the other. The relative yield of the organic system, compared with the conventional system, was not associated with rainfall.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noémie Ostandie ◽  
Brice Giffard ◽  
Olivier Bonnard ◽  
Benjamin Joubard ◽  
Sylvie Richart-Cervera ◽  
...  

AbstractUnderstanding the response of biodiversity to organic farming is crucial to design more sustainable agriculture. While it is known that organic farming benefits biodiversity on average, large variability in the effects of this farming system exists. Moreover, it is not clear how different practices modulate the performance of organic farming for biodiversity conservation. In this study, we investigated how the abundance and taxonomic richness of multiple species groups responds to certified organic farming and conventional farming in vineyards. Our analyses revealed that farming practices at the field scale are more important drivers of community abundance than landscape context. Organic farming enhanced the abundances of springtails (+ 31.6%) and spiders (+ 84%), had detrimental effects on pollinator abundance (− 11.6%) and soil microbial biomass (− 9.1%), and did not affect the abundance of ground beetles, mites or microarthropods. Farming practices like tillage regime, insecticide use and soil copper content drove most of the detected effects of farming system on biodiversity. Our study revealed varying effects of organic farming on biodiversity and clearly indicates the need to consider farming practices to understand the effects of farming systems on farmland biodiversity.


2004 ◽  
pp. 256-261 ◽  
Author(s):  
Krisztina Koch

On the basis of data from selected organic crop producing farms around Hortobagy and a significant conventional agricultural enterprise, the efficiency calculation of two important crops, winter wheat and sunflower were compared to each other, according to the organic and the conventional farming methods. The analysis was carried out on the basis of data of the year 2002, helped by the calculation and the comparison of the efficiency indexes. According to the results, the organic winter wheat was more highly profitable in 2002 than the conventional one, and this is because the price ratio of the two was quite high, however the yields and the production costs per hectare were almost on the same level. Considering the sunflower, organic farming was less productive than the conventional one in 2002, as the average yield in the examined organic farms was significantly lower than under the conventional farming method, and this was not compensated by the extra price for the organic crop product.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aitana Ares ◽  
Joana Costa ◽  
Carolina Joaquim ◽  
Duarte Pintado ◽  
Daniela Santos ◽  
...  

Maize is one of the most important crops worldwide and is the number one arable crop in Portugal. A transition from the conventional farming system to organic agriculture requires optimization of cultivars and management, the interaction of plant–soil rhizosphere microbiota being pivotal. The objectives of this study were to unravel the effect of population genotype and farming system on microbial communities in the rhizosphere of maize. Rhizosphere soil samples of two open-pollinated maize populations (“SinPre” and “Pigarro”) cultivated under conventional and organic farming systems were taken during flowering and analyzed by next-generation sequencing (NGS). Phenological data were collected from the replicated field trial. A total of 266 fungi and 317 bacteria genera were identified in “SinPre” and “Pigarro” populations, of which 186 (69.9%) and 277 (87.4%) were shared among them. The microbiota of “Pigarro” showed a significant higher (P < 0.05) average abundance than the microbiota of “SinPre.” The farming system had a statistically significant impact (P < 0.05) on the soil rhizosphere microbiota, and several fungal and bacterial taxa were found to be farming system-specific. The rhizosphere microbiota diversity in the organic farming system was higher than that in the conventional system for both varieties. The presence of arbuscular mycorrhizae (Glomeromycota) was mainly detected in the microbiota of the “SinPre” population under the organic farming systems and very rare under conventional systems. A detailed metagenome function prediction was performed. At the fungal level, pathotroph–saprotroph and pathotroph–symbiotroph lifestyles were modified by the farming system. For bacterial microbiota, the main functions altered by the farming system were membrane transport, transcription, translation, cell motility, and signal transduction. This study allowed identifying groups of microorganisms known for their role as plant growth-promoting rhizobacteria (PGPR) and with the capacity to improve crop tolerance for stress conditions, allowing to minimize the use of synthetic fertilizers and pesticides. Arbuscular mycorrhizae (phyla Glomeromycota) were among the most important functional groups in the fungal microbiota and Achromobacter, Burkholderia, Erwinia, Lysinibacillus, Paenibacillus, Pseudomonas, and Stenotrophomonas in the bacterial microbiota. In this perspective, the potential role of these microorganisms will be explored in future research.


2017 ◽  
Vol 84 (2) ◽  
pp. 206-213 ◽  
Author(s):  
Eleni Malissiova ◽  
Theofilos Papadopoulos ◽  
Aikaterini Kyriazi ◽  
Maria Mparda ◽  
Christina Sakorafa ◽  
...  

The aim of this study was to examine differences in the microbiological profile and antimicrobial resistance of bacteria isolated from milk from organic and conventional sheep and goat farms. Twenty-five organic and 25 conventional sheep and goat farms in the region of Thessaly, Greece participated in this study. A standardised detailed questionnaire was used to describe farming practices. A total of 50 samples were collected and analysed for total viable count (TVC), total coliform count (TCC) and somatic cell count (SCC), whileStaphylococcus aureusandEscherichia coliwere isolated using standard methods. Isolates were identified at species level by Api-test and Matrix-Assisted Laser Desorption/Ionisation-Time of Flight Mass Spectrometry (MALDI-TOF MS). Susceptibility to a panel of 20 forE. coliand 16 forS. aureusantimicrobials was determined by the agar dilution method. Pulsed Field Gel Electrophoresis (PFGE) was performed forS. aureusandE. coliisolates to determine predominant clones. Lower counts of TVC, TCC and SCC were identified in milk from the organic farms, possibly due to differences in the hygienic farming practices found on those farms. API-tests and MALDI-TOF MS showed no significant differences in theS. aureusandE. coliisolates. Overall, antimicrobial resistance rates were low, while a statistically higher percentage was estimated among strains originating from conventional farms in comparison with organic farms, possibly due to the restriction of antibiotic use in organic farming. PFGE revealed diversity amongS. aureusandE. colipopulations in both organic and conventional farms indicating circulation of 2–3 main clones changing slightly during their evolution. Consequently, there is evidence that milk from the organic farms presents a better microbiological profile when compared with milk from conventional farms.


Sign in / Sign up

Export Citation Format

Share Document