scholarly journals Organic but Also Low-Input Conventional Farming Systems Support High Biodiversity of Weed Species in Winter Cereals

Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 413 ◽  
Author(s):  
Adam Kleofas Berbeć ◽  
Mariola Staniak ◽  
Beata Feledyn-Szewczyk ◽  
Anna Kocira ◽  
Jarosław Stalenga

In recent years, the European Union has been paying particular attention to the problem of biodiversity loss. The possibilities of its assessment and conservation are included in the latest European Union (EU) policies and reflected in the European Biodiversity Strategy. The biodiversity of weeds in winter cereals in organic and conventional low-input farms in Eastern Poland was investigated during a 3-year period. Significantly more species and larger abundance were found in organic than in conventional farming systems. The biodiversity of these communities was described by Shannon’s diversity and Simpson’s dominance indices, which showed diversity to be well maintained in both farming systems; however, significantly higher Shannon’s index and significantly lower Simpson’s index values were observed in organic farms. Both farming systems were the mainstay of endangered and rare species, as well as some invasive weed species. Weed communities of organic farms were dominated mostly by Setaria pumila and Elymus repens, while conventional farms were dominated by Juncus bufonius and Setaria pumila. The study showed the importance of organic farming systems for biodiversity conservation. It was also shown that low-input (traditional) conventional farms are also beneficial for biodiversity conservation.

Author(s):  
Michaela Kolářová ◽  
Luděk Tyšer ◽  
Josef Soukup

The aim of this study was to explore the composition of weed vegetation on arable land in selected areas of the Czech Republic and to determine the level of γ-diversity. Our survey was conducted at 27 conventional and 35 organic farms from 2006–2008. In each sampled field, one phytocoenological relevé of a standard size of 100 m2 was recorded in the central part of the field. The species cover was estimated. The total γ-diversity was expressed as the total number of weed species recorded. γ-diversity of different farming systems, altitudes and crops was calculated. Subsequently, the species were divided on the basis of their perenniality. In total, 172 weed species were found – 123 and 162 in conventional and organic farming, respectively. The highest number of species was found in winter cereals and at medium altitudes. Chenopodium album was recorded as the species with the highest constancy in both types of farming. In total, 89 annuals, 17 biennials and 15 perennials were observed in conventional farming, and 109 annuals, 23 biennials, 28 perennials and 2 semiparasitic annuals were found in organic farming.


Author(s):  
Jaroslav Jánský ◽  
Jiří Pospíšil

The paper presents economic analysis of growing of legume-cereal intercropping in conditions of organic farming. Results of the analysis are based on data monitoring in chosen organic farms that grow LCI. In the paper there is also compared economic efficiency of LCI grown in organic and conventional farming system. Methodological solution results from costingness and earnings monitoring of LCI production in five chosen organic farms in the period 2007–2008.When evaluating costs existing in individual variants of LCI growing it is necessary to say that the selection of individual machines and machine aggregations represents the most important factor of influencing direct costs, namely with regard to the size of organic farms and to the area of individual field blocks. Under conditions of organic farms, the LCI production is also significantly influenced also by agrotechnical (tillage) operations. As compared with conventional farms, the final yield of both green fodder and grain is lower by 14–38%. Total direct costs per hectare of harvested LCI acreage ranged in case of fodder production from 9.249 CZK to 11.620 CZK per hectare. In case of grain production, the corresponding costs ranged from 8.848 to 9.970 CZK per hectare. In case of LCI, the direct costs of organic farms per unit of production of both fodder and grain consist mainly of material costs, which represent 63–76% and 61–68% of total expenses associated with production of fodder and grain, respectively. These direct costs are influenced also by higher prices of inputs.


1995 ◽  
Vol 24 (1) ◽  
pp. 136-137
Author(s):  
Wayne S. Roberts ◽  
Scott M. Swinton

A long term whole farm analysis comparing conventional and low-input farming systems is reviewed. A computational error led to the mistaken conclusion that conventional farming with government programs is less preferred by risk-averse farmers than the low input alternative. The greater income variance of conventional agriculture need not make it less preferred provided a higher mean income sufficiently offsets the higher variance.


1997 ◽  
Vol 12 (4) ◽  
pp. 173-177 ◽  
Author(s):  
Eric Pallant ◽  
David M. Lansky ◽  
Jessica E. Rio ◽  
Lawrence D. Jacobs ◽  
George E. Schulera ◽  
...  

AbstractChanges in soil physical and chemical properties following conversion from conventional to low-input farming systems could alter root growth in com and hence aboveground growth and yield. The main hypothesis we tested is that low-input and conventional farming systems produce different amounts of corn roots. We compared low-input and conventional farming systems, row position (row and interrow), and soil depth for effects on root length density in a Comly silt loam (Typic Fragiudalf) at the Rodale Institute Research Center in Kutztown, Pennsylvania. On all sampling dates studied (two each in 1989 and 1990) root length density under low-input farming systems was significantly greater than under conventional farming systems. We used analysis of covariance to correct for soil factors that could not be directly controlled. Soil water and bulk density had no clear effect on root length density. In contrast, there was significant covariance of soil organic matter with root length density on two of the four sample dates. Root networks were more dense in soil pockets rich in organic matter for every farming system, row position, and depth. These findings indicate that low-input farmers may be manipulating root production of corn to allow com to absorb more nutrients and water when water in the topsail is limited.


NeoBiota ◽  
2019 ◽  
Vol 43 ◽  
pp. 27-45 ◽  
Author(s):  
Attila-Károly Szabó ◽  
József Kiss ◽  
János Bálint ◽  
Szidónia Kőszeghi ◽  
Hugh D. Loxdale ◽  
...  

We conducted field surveys to detect the population density of the most important invasive weed species and their associated virus vectoring aphids in crops grown under high input field (HIF) vs low-input field (LIF) conditions, with and without fertilizers and pesticides. The most frequent invasive weed species were Stenactisannua, Erigeroncanadensis and Solidagocanadensis. These species were hosts predominantly for the aphids Brachycaudushelichrysi and Aulacorthumsolani in both management systems. The 13% higher coverage of S.annua under LIF conditions resulted in a 30% higher B.helichrysi abundance and ~85% higher A.solani abundance compared with HIF conditions. Host plant quality was assessed by measuring peroxidase enzyme activity. There was a significantly increased POD activity at 10 μmol min−1 mg protein−1 unit in S.annua under LIF conditions, suggesting a higher stress by aphids under this management regime. The high colonization intensity of B.helichrysi on maize, potato and alfalfa crops were detected from both S.annua and E.canadensis. We conclude that new and faster methods need to be used to prevent colonization of such virus vectoring aphids and their host plants, even under low input regimes.


1999 ◽  
Vol 14 (3) ◽  
pp. 109-121 ◽  
Author(s):  
Sean Clark ◽  
Karen Klonsky ◽  
Peter Livingston ◽  
Steve Temple

AbstractWe compared the crop yields and economic performance of organic, lowinput, and conventional farming systems over an eight-year period based on research from the Sustainable Agriculture Farming Systems (SAFS) Project in California's Sacramento Valley. The SAFS Project consisted of four farming-system treatments that differed in material input use and crop rotation sequence. The treatments included four-year rotations under conventional (conv-4), low-input, and organic management, and a conventionally-managed, two-year rotation (conv-2). The four-year rotations included processing tomato, safflower, corn, and bean and a winter grain and/or legume doublecropped with bean. The conv-2 treatment was a tomato and wheat rotation. In the lowinput and organic systems, inorganic fertilizer and synthetic pesticide inputs were reduced or eliminated largely through crop rotation, legume cover crops, composted manure applications, and mechanical cultivation.All crops, except safflower, demonstrated significant yield differences across farming systems in at least some years of the experiment. Yields of tomato and corn, the most nitrogen (N)-demanding crops in the rotations, responded most years to the farming-system years treatments, while bean and the winter grain/legume displayed treatment differences less often and instead tended to vary more with yearly growing conditions. Nitrogen availability and/or weed competition appeared to account for lower crop yields in the organic and low-input systems in some years. The economics of all farming systems depended mainly on the costs and profits associated with tomato production. The most profitable system was the conv-2 system due to the greater frequency of tomato in that system. Among the four-year rotations, the organic system was the most profitable. However, this system's dependence on price premiums leads to some concern over its long-term economic viability. Among the low-input cropping systems, corn demonstrated clear agronomic and economic advantages over conventional production methods. Based upon these findings, we suggest that future research on organic and low-input farming systems focus on developing cost-effective fertility and weed management options based upon improved understanding of N dynamics and weed ecology.


2008 ◽  
Vol 28 (4) ◽  
pp. 541-550 ◽  
Author(s):  
Yara N. Geus ◽  
A. Susana Goggi ◽  
Linda M. Pollak

2021 ◽  
Author(s):  
Vera Silva ◽  
Violette Geissen ◽  
Esperanza Huerta Lwanga ◽  
Nicolas Beriot ◽  
Klaas Oostindie ◽  
...  

<p>Considering that pesticides have been used in Europe for over 70 years, a system for monitoring pesticide residues in EU soils and their effects on soil health is long overdue. In an attempt to address this problem, we tested 340 EU agricultural topsoil samples for multiple pesticide residues. These samples originated from 4 representative EU case study sites (CSS), which covered 3 countries and four of the main EU crops: vegetable and orange production in Spain (S-V and S-O, respectively), grape production in Portugal (P-G), and potato production in the Netherlands (N-P). Soil samples were collected between 2015 and 2018 after harvest or before the start of the growing season, depending on the CSS. Conventional and organic farming results were compared in S-V, S-O and N-P. Soils from conventional farms presented mostly mixtures of pesticide residues, with a maximum of 16 residues/sample. Soils from organic farms had significantly fewer residues, with a maximum of 5 residues/sample. The residues with the highest frequency of detection and the highest content in soil were herbicides: glyphosate and its main metabolite AMPA (P-G, N-P, S-O), and pendimethalin (S-V). Total residue content in soil reached values of 0.8 mg kg-1 for S-V, 2 mg kg-1 for S-O and N-P, and 12 mg kg-1 for P-G. Organic soils presented 70-90% lower residue concentrations than the corresponding conventional soils. There is a severe knowledge gap concerning the effects of the accumulated and complex mixtures of pesticide residues found in soil on soil biota and soil health. Safety benchmarks should be defined and introduced into (soil) legislation as soon as possible. Soil remediation techniques should be developed to keep the levels of pesticide residues below such benchmarks. Furthermore, the process of transitioning to organic farming should take into consideration the residue mixtures and their residence time in soil.  </p>


Sign in / Sign up

Export Citation Format

Share Document