scholarly journals The oxidation of glucose, ketone bodies and acetate by the brain of normal and ketonaemic sheep.

1976 ◽  
Vol 259 (3) ◽  
pp. 801-823 ◽  
Author(s):  
D B Lindsay ◽  
B P Setchell
2021 ◽  
Author(s):  
Stefanie Schirmeier ◽  
Helen Hertenstein ◽  
Ellen McMullen ◽  
Leon Deharde ◽  
Marko Brankatschk

Abstract Neuronal function is highly energy demanding and thus requires efficient and constant metabolite delivery. Like their mammalian counterparts Drosophila glia are highly glycolytic and provide lactate to fuel neuronal metabolism. However, flies are able to survive for several weeks in the absence of glial glycolysis1. Here, we study how glial cells maintain sufficient nutrient supply to neurons under conditions of carbohydrate restriction. We show that glycolytically impaired glia switch to fatty acid breakdown via β-oxidation and provide ketone bodies as an alternate neuronal fuel. Moreover, flies also rely on glial β-oxidation under starvation conditions with glial loss of β-oxidation increasing susceptibility to starvation. Further, we show that glial cells act as a metabolic sensor in the brain and can induce mobilization of peripheral energy stores to ensure brain metabolic homeostasis. In summary, our study gives pioneering evidence on the importance of glial β-oxidation and ketogenesis for brain function, and survival, under adverse conditions, like malnutrition. The glial capacity to utilize lipids as an energy source seems to be conserved from flies to humans.


1991 ◽  
Vol 261 (5) ◽  
pp. E647-E652 ◽  
Author(s):  
R. A. Hawkins ◽  
A. M. Mans

The permeability of the blood-brain barrier to ketone bodies, substrates of the monocarboxylic acid carrier, was measured in individual brain structures of control and portacaval-shunted rats. The measurements were made 5-7 wk after the shunt or sham operation by quantitative autoradiography. Portacaval shunting caused the permeability to ketone bodies to decrease throughout the brain by approximately 70%. There was a striking change in the transport pattern in the cerebral cortex; deeper cortical layers were affected more than superficial layers. Ketone body consumption by brain is limited by the transport capacity of the monocarboxylic acid system. Therefore, in portacaval-shunted rats the very low activity of this system makes it unlikely that ketone bodies can make a substantial contribution during situations such as fasting. Likewise, other substrates of the monocarboxylic acid system, e.g., lactate and pyruvate, will have greatly restricted access to the brain after portacaval shunting. If the carrier is symmetrical, another consequence will be that exit of endogenously produced lactate will be retarded.


2014 ◽  
Vol 116 (9) ◽  
pp. 1238-1250 ◽  
Author(s):  
Masaki Takimoto ◽  
Taku Hamada

The brain is capable of oxidizing lactate and ketone bodies through monocarboxylate transporters (MCTs). We examined the protein expression of MCT1, MCT2, MCT4, glucose transporter 1 (GLUT1), and cytochrome- c oxidase subunit IV (COX IV) in the rat brain within 24 h after a single exercise session. Brain samples were obtained from sedentary controls and treadmill-exercised rats (20 m/min, 8% grade). Acute exercise resulted in an increase in lactate in the cortex, hippocampus, and hypothalamus, but not the brainstem, and an increase in β-hydroxybutyrate in the cortex alone. After a 2-h exercise session MCT1 increased in the cortex and hippocampus 5 h postexercise, and the effect lasted in the cortex for 24 h postexercise. MCT2 increased in the cortex and hypothalamus 5–24 h postexercise, whereas MCT2 increased in the hippocampus immediately after exercise, and remained elevated for 10 h postexercise. Regional upregulation of MCT2 after exercise was associated with increases in brain-derived neurotrophic factor and tyrosine-related kinase B proteins, but not insulin-like growth factor 1. MCT4 increased 5–10 h postexercise only in the hypothalamus, and was associated with increased hypoxia-inducible factor-1α expression. However, none of the MCT isoforms in the brainstem was affected by exercise. Whereas GLUT 1 in the cortex increased only at 18 h postexercise, COX IV in the hippocampus increased 10 h after exercise and remained elevated for 24 h postexercise. These results suggest that acute prolonged exercise induces the brain region-specific upregulation of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins.


Author(s):  
Kui Xu ◽  
Joseph C. LaManna ◽  
Michelle A. Puchowicz

The brain is normally completely dependent on glucose, but is capable of using ketones as an alternate energy source, as occurs with prolonged starvation or chronic feeding of a ketogenic diet. Research has shown that ketosis is neuroprotective against ischemic insults in rodents. This review focuses on investigating the mechanistic links to neuroprotection by ketosis in the aged. Recovery from stroke and other pathophysiological conditions in the aged is challenging. Cerebral metabolic rate for glucose, cerebral blood flow, and the defenses against oxidative stress are known to decline with age, suggesting dysfunction of the neurovascular unit. One mechanism of neuroprotection by ketosis involves succinate-induced stabilization of hypoxic inducible factor-1alpha (HIF1α‎) and its downstream effects on intermediary metabolism. The chapter hypothesizes that ketone bodies play a role in the restoration of energy balance (stabilization of ATP supply) and act as signaling molecules through the up-regulation of salvation pathways targeted by HIF1α‎.


2020 ◽  
Vol 21 (22) ◽  
pp. 8767
Author(s):  
Nicole Jacqueline Jensen ◽  
Helena Zander Wodschow ◽  
Malin Nilsson ◽  
Jørgen Rungby

Under normal physiological conditions the brain primarily utilizes glucose for ATP generation. However, in situations where glucose is sparse, e.g., during prolonged fasting, ketone bodies become an important energy source for the brain. The brain’s utilization of ketones seems to depend mainly on the concentration in the blood, thus many dietary approaches such as ketogenic diets, ingestion of ketogenic medium-chain fatty acids or exogenous ketones, facilitate significant changes in the brain’s metabolism. Therefore, these approaches may ameliorate the energy crisis in neurodegenerative diseases, which are characterized by a deterioration of the brain’s glucose metabolism, providing a therapeutic advantage in these diseases. Most clinical studies examining the neuroprotective role of ketone bodies have been conducted in patients with Alzheimer’s disease, where brain imaging studies support the notion of enhancing brain energy metabolism with ketones. Likewise, a few studies show modest functional improvements in patients with Parkinson’s disease and cognitive benefits in patients with—or at risk of—Alzheimer’s disease after ketogenic interventions. Here, we summarize current knowledge on how ketogenic interventions support brain metabolism and discuss the therapeutic role of ketones in neurodegenerative disease, emphasizing clinical data.


1990 ◽  
Vol 18 (3) ◽  
pp. 421-422
Author(s):  
J. C. DUTRA ◽  
M. WAJNER ◽  
C. S. DUTRA-FILHO ◽  
C. F. MANNMACHER ◽  
C. M. D. WANNMACHER
Keyword(s):  

1977 ◽  
Vol 34 (1) ◽  
pp. 1-13 ◽  
Author(s):  
P.M. Daniel ◽  
E.R. Love ◽  
S.R. Moorhouse ◽  
O.E. Pratt
Keyword(s):  

1974 ◽  
Vol 138 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Neil B. Ruderman ◽  
Peter S. Ross ◽  
Michael Berger ◽  
Michael N. Goodman

1. The effects of starvation and diabetes on brain fuel metabolism were examined by measuring arteriovenous differences for glucose, lactate, acetoacetate and 3-hydroxybutyrate across the brains of anaesthetized fed, starved and diabetic rats. 2. In fed animals glucose represented the sole oxidative fuel of the brain. 3. After 48h of starvation, ketone-body concentrations were about 2mm and ketone-body uptake accounted for 25% of the calculated O2 consumption: the arteriovenous difference for glucose was not diminished, but lactate release was increased, suggesting inhibition of pyruvate oxidation. 4. In severe diabetic ketosis, induced by either streptozotocin or phlorrhizin (total blood ketone bodies >7mm), the uptake of ketone bodies was further increased and accounted for 45% of the brain 's oxidative metabolism, and the arteriovenous difference for glucose was decreased by one-third. The arteriovenous difference for lactate was increased significantly in the phlorrhizin-treated rats. 5. Infusion of 3-hydroxybutyrate into starved rats caused marked increases in the arteriovenous differences for lactate and both ketone bodies. 6. To study the mechanisms of these changes, steady-state concentrations of intermediates and co-factors of the glycolytic pathway were determined in freeze-blown brain. 7. Starved rats had increased concentrations of acetyl-CoA. 8. Rats with diabetic ketosis had increased concentrations of fructose 6-phosphate and decreased concentrations of fructose 1,6-diphosphate, indicating an inhibition of phosphofructokinase. 9. The concentrations of acetyl-CoA, glycogen and citrate, a potent inhibitor of phosphofructokinase, were increased in the streptozotocin-treated rats. 10. The data suggest that cerebral glucose uptake is decreased in diabetic ketoacidosis owing to inhibition of phosphofructokinase as a result of the increase in brain citrate. 11. The inhibition of brain pyruvate oxidation in starvation and diabetes can be related to the accelerated rate of ketone-body metabolism; however, we found no correlation between the decrease in glucose uptake in the diabetic state and the arteriovenous difference for ketone bodies. 12. The data also suggest that the rates of acetoacetate and 3-hydroxybutyrate utilization by brain are governed by their concentrations in plasma. 13. The finding of very low concentrations of acetoacetate and 3-hydroxybutyrate in brain compared with plasma suggests that diffusion across the blood –brain barrier may be the rate-limiting step in their metabolism.


Rapidly induced, sustained hyperglycaemia in rats caused a sharp, transient increase in cerebral glucose gain (defined as the rate at which glucose enters the brain from the circulating blood and is retained for metabolic or other purposes). This initial increase in gain during hyperglycaemia took place whether or not exogenous insulin was injected. However, if animals were not given insulin the increase in cerebral glucose gain was not sustained as the period of hyperglycaemia was prolonged, but decreased steadily until, after 20 min, it was similar to that found in animals with normal concentrations of glucose in the blood. The effect of the injection of insulin was to cause the initial sharp increase in the cerebral gain of glucose to be sustained (though at a somewhat lower level) during periods of hyperglycaemia lasting up to at least 60 min. Insulin did not act by blocking the efflux of glucose from the brain nor did it stimulate cerebral glucose metabolism indirectly by reducing the supply of ketone bodies to the brain. The concentration of glycogen in the brains of hyperglycaemic animals was almost doubled by insulin, but this increase in glycogen content only accounted for a small part of the extra glucose gained by the brains. Anaerobic glycolysis in the brain was not altered by insulin. It was concluded that insulin caused the cerebral cells to use more glucose not only to form glycogen but, to a much greater extent, to synthesize other substances, probably mainly the non-essential amino acids.


Author(s):  
Stephen C. Cunnane ◽  
Alexandre Courchesne-Loyer ◽  
Valerie St-Pierre ◽  
Camille Vandenberghe ◽  
Etienne Croteau ◽  
...  

Brain glucose uptake is impaired in Alzheimer’s disease (AD). A key question is whether cognitive decline could be delayed if this defect were at least partly corrected or bypassed. Ketones (or ketone bodies) such as beta-hydroxybutyrate and acetoacetate are the brain’s main alternative fuels. Several studies have shown that in mild-to-moderate AD, brain ketone uptake is similar to that of healthy age-matched controls. Published clinical trials show that increasing ketone availability to the brain via nutritional ketosis has modest benefits on cognitive outcomes in mild-to-moderate AD and in mild cognitive impairment. Nutritional ketosis can be safely achieved by a high-fat ketogenic diet or supplements providing medium chain triglycerides. Given the acute dependence of the brain on its energy supply and the ineffectiveness of current therapeutic strategies for AD consideration be given to correcting the underlying problem of deteriorating brain fuel supply during aging.


Sign in / Sign up

Export Citation Format

Share Document