Effective Elastic Properties of Porous Materials With Randomly Dispersed Pores: Finite Deformation

2000 ◽  
Vol 67 (4) ◽  
pp. 667-670 ◽  
Author(s):  
V. A. Levin ◽  
V. V. Lokhin ◽  
K. M. Zingerman

A method is developed for the analysis of the effective properties of porous nonlinear elastic materials with randomly distributed interacting pores under finite deformations. The method is based on the solution of the problems of nonlinear elasticity for a representative region using Signorini’s expansion. The constitutive equations for the matrix material and for the comparison material are written in a form corresponding to Murnaghan’s potential. The technique, which is used for ensemble averaging, approximately simulates the uniform distribution of pores. The computations are performed for plane strain, when pores are equal in size, and a circular cylindrical shape in the undeformed state is assumed. [S0021-8936(00)01802-X]

2003 ◽  
Vol 70 (6) ◽  
pp. 809-816 ◽  
Author(s):  
V. A. Levin ◽  
K. M. Zingermann

A method is developed for derivation of effective constitutive equations for porous nonlinear-elastic materials undergoing finite strains. It is shown that the effective constitutive equations that are derived using the proposed approach do not change if a rigid motion is superimposed on the deformation. An approach is proposed for the computation of effective characteristics for nonlinear-elastic materials in which pores are originated after a preliminary loading. This approach is based on the theory of superimposed finite deformations. The results of computations are presented for plane strain, when pores are distributed uniformly.


1999 ◽  
Vol 14 (1) ◽  
pp. 49-63 ◽  
Author(s):  
L. V. Gibiansky ◽  
S. Torquato

This paper is concerned with the effective piezoelectric moduli of a special class of dispersions called matrix laminates composites that are known to possess extremal elastic and dielectric moduli. It is assumed that the matrix material is an isotropic dielectric, and the inclusions and composites are transversely isotropic piezoelectrics that share the same axis of symmetry. The exact expressions for the effective coefficients of such structures are obtained. They can be used to approximate the effective properties of any transversely isotropic dispersion. The advantages of our approximations are that they are (i) realizable, i.e., correspond to specific microstructures; (ii) analytical and easy to compute even in nondegenerate cases; (iii) valid for the entire range of phase volume fractions; and (iv) characterized by two free parameters that allow one to “tune” the approximation and describe a variety of microstructures. The new approximations are compared with known ones.


Author(s):  
Haitao Zhang ◽  
Ke Li ◽  
Masaei Ito ◽  
Tony Collins

The increasing demand for oil and gas has incited exploration and production of deeper wells that reach high pressure and high temperature (HPHT) reservoirs. One critical element that is required to this end is rubber seals that can withstand HPHT conditions while meeting the requirements of sealability and structural integrity. Novel nanocomposites that comprise of natural rubber (NR) reinforced by well dispersed, high-concentration carbon nanotubes (CNTs) were recently developed to achieve the desired performance and were experimentally shown to exhibit significantly higher storage modulus than the matrix material. Understanding of the underlying reinforcing mechanism of this class of nanocomposites subjected to large deformation, especially in the real application conditions, has been very limited. In this study, a multiscale modeling method is developed to understand the mechanical behavior of CNT-rubber seals installed in a groove and subjected to high pressure. A micromechanics model is first constructed to evaluate the effective stress-strain responses of a representative volume element under different loading conditions, including uniaxial tension, equal biaxial extension, and planar tension. The effective properties thus established are then inputted into an appropriate hyperelasticity model, which is then used to model a CNT-rubber O-ring installed and pressurized. Sealability and structural integrity are evaluated in terms of contact pressure and strain. The numerical results are compared with the available experimental data. A parametric study is then conducted to assess the effects of CNT concentrations.


2013 ◽  
Vol 80 (5) ◽  
Author(s):  
Adair Roberto Aguiar ◽  
Julián Bravo Castillero ◽  
Reinaldo Rodríguez Ramos ◽  
Uziel Paulo da Silva

The asymptotic homogenization method (AHM) yields a two-scale procedure to obtain the effective properties of a composite material containing a periodic distribution of unidirectional circular cylindrical holes in a linear transversely isotropic piezoelectric matrix. The matrix material belongs to the symmetry crystal class 622. The holes are centered in a periodic array of cells of square cross sections and the periodicity is the same in two perpendicular directions. The composite state is antiplane shear piezoelectric, that is, a coupled state of out-of-plane shear deformation and in-plane electric field. Local problems that arise from the two-scale analysis using the AHM are solved by means of a complex variable method. For this, the solutions are expanded in power series of Weierstrass elliptic functions, which contain coefficients that are determined from the solutions of infinite systems of linear algebraic equations. Truncating the infinite systems up to a finite, but otherwise arbitrary, order of approximation, we obtain analytical formulas for effective elastic, piezoelectric, and dielectric properties, which depend on both the volume fraction of the holes and an electromechanical coupling factor of the matrix. Numerical results obtained from these formulas are compared with results obtained by the Mori–Tanaka approach. The results could be useful in bone mechanics.


Author(s):  
C.T. Hu ◽  
C.W. Allen

One important problem in determination of precipitate particle size is the effect of preferential thinning during TEM specimen preparation. Figure 1a schematically represents the original polydispersed Ni3Al precipitates in the Ni rich matrix. The three possible type surface profiles of TEM specimens, which result after electrolytic thinning process are illustrated in Figure 1b. c. & d. These various surface profiles could be produced by using different polishing electrolytes and conditions (i.e. temperature and electric current). The matrix-preferential-etching process causes the matrix material to be attacked much more rapidly than the second phase particles. Figure 1b indicated the result. The nonpreferential and precipitate-preferential-etching results are shown in Figures 1c and 1d respectively.


Author(s):  
D. E. Luzzi ◽  
L. D. Marks ◽  
M. I. Buckett

As the HREM becomes increasingly used for the study of dynamic localized phenomena, the development of techniques to recover the desired information from a real image is important. Often, the important features are not strongly scattering in comparison to the matrix material in addition to being masked by statistical and amorphous noise. The desired information will usually involve the accurate knowledge of the position and intensity of the contrast. In order to decipher the desired information from a complex image, cross-correlation (xcf) techniques can be utilized. Unlike other image processing methods which rely on data massaging (e.g. high/low pass filtering or Fourier filtering), the cross-correlation method is a rigorous data reduction technique with no a priori assumptions.We have examined basic cross-correlation procedures using images of discrete gaussian peaks and have developed an iterative procedure to greatly enhance the capabilities of these techniques when the contrast from the peaks overlap.


2020 ◽  
Vol 38 (7A) ◽  
pp. 960-966
Author(s):  
Aseel M. Abdullah ◽  
Hussein Jaber ◽  
Hanaa A. Al-Kaisy

In the present study, the impact strength, flexural modulus, and wear rate of poly methyl methacrylate (PMMA) with eggshell powder (ESP) composites have been investigated. The PMMA used as a matrix material reinforced with ESP at two different states (including untreated eggshell powder (UTESP) and treated eggshell powder (TESP)). Both UTESP and TESP were mixed with PMMA at different weight fractions ranged from (1-5) wt.%. The results revealed that the mechanical properties of the PMMA/ESP composites were enhanced steadily with increasing eggshell contents. The samples with 5 wt.% of UTESP and TESP additions give the maximum values of impact strength, about twice the value of the pure PMMA sample. The calcination process of eggshells powders gives better properties of the PMMA samples compared with the UTESP at the same weight fraction due to improvements in the interface bond between the matrix and particles. The wear characteristics of the PMMA composites decrease by about 57% with increases the weight fraction of TESP up to 5 wt.%. The flexural modulus values are slightly enhanced by increasing of the ESP contents in the PMMA composites.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1235
Author(s):  
Bidita Salahuddin ◽  
Rahim Mutlu ◽  
Tajwar A. Baigh ◽  
Mohammed N. Alghamdi ◽  
Shazed Aziz

Passive vibration control using polymer composites has been extensively investigated by the engineering community. In this paper, a new kind of vibration dampening polymer composite was developed where oriented nylon 6 fibres were used as the reinforcement, and 3D printed unoriented nylon 6 was used as the matrix material. The shape of the reinforcing fibres was modified to a coiled structure which transformed the fibres into a smart thermoresponsive actuator. This novel self-reinforced composite was of high mechanical robustness and its efficacy was demonstrated as an active dampening system for oscillatory vibration of a heated vibrating system. The blocking force generated within the reinforcing coiled actuator was responsible for dissipating vibration energy and increase the magnitude of the damping factor compared to samples made of non-reinforced nylon 6. Further study shows that the appropriate annealing of coiled actuators provides an enhanced dampening capability to the composite structure. The extent of crystallinity of the reinforcing actuators is found to directly influence the vibration dampening capacity.


2019 ◽  
Vol 809 ◽  
pp. 480-486
Author(s):  
Rohit George Sebastian ◽  
Christof Obertscheider ◽  
Ewald Fauster ◽  
Ralf Schledjewski

The growing use of composite materials has generated interest in improving and optimising composite manufacturing processes such as Liquid Composite Moulding (LCM). In LCM, dry preforms are placed in a mould and impregnated with the matrix material. The efficiency of filling the moulds can be improved by using Computational Fluid Dynamics (CFD) filling simulations during the design of the mould. As part of an on-going effort to develop a CFD tool for the simulation of LCM processes, a volume averaged energy balance equation has been derived and implemented in a custom OpenFOAM solver. The energy balance is implemented in a custom OpenFOAM solver with and without the pressure terms for comparison with results from RTM experiments. It is found that the pressure terms do not significantly influence the results for LCM processes.


Sign in / Sign up

Export Citation Format

Share Document