Scission and Healing in a Spinning Elastomeric Cylinder at Elevated Temperature

2002 ◽  
Vol 69 (5) ◽  
pp. 602-609 ◽  
Author(s):  
A. S. Wineman ◽  
J. A. Shaw

When an elastomeric material is subject to sufficiently high temperature, macromolecular network junctions can undergo time-dependent scission and re-crosslinking (healing). The material system then consists of molecular networks with different reference states. A constitutive framework, based on the experimental work of Tobolsky, is used to determine the evolution of deformation of a solid rubber cylinder spinning at constant angular velocity at an elevated temperature. Responses based on underlying neo-Hookean, Mooney-Rivlin, and Arruda-Boyce models, were solved numerically and compared. Different amounts of healing were studied for each case. For neo-Hookean molecular networks, there may be a critical finite time when the radius grows infinitely fast and the cylinder “blows up.” This time depends on the angular velocity and the rate of re-cross linking. In addition, no solution was possible for angular velocities above a critical value, even without the effects of scission. Such anomalous behavior does not occur for Mooney-Rivlin or Arruda-Boyce network response.

2018 ◽  
Vol 1 (84) ◽  
Author(s):  
Vilma Jurevičienė ◽  
Albertas Skurvydas ◽  
Juozas Belickas ◽  
Giedra Bušmanienė ◽  
Dovilė Kielė ◽  
...  

Research  background  and  hypothesis.  Proprioception  is  important  in  the  prevention  of  injuries  as  reduced proprioception  is  one  of  the  factors  contributing  to  injury  in  the  knee  joint,  particularly  the  ACL.  Therefore, proprioception appears not only important for the prevention of ACL injuries, but also for regaining full function after ACL reconstruction.Research aim. The aim of this study was to understand how proprioception is recovered four and five months after anterior cruciate ligament (ACL) reconstruction.Research methods. The study included 15 male subjects (age – 33.7 ± 2.49 years) who had undergone unilateral ACL reconstruction with a semitendinosus/gracilis (STG) graft in Kaunas Clinical Hospital. For proprioceptive assessment, joint position sense (JPS) was measured on both legs using an isokinetic dynamometer (Biodex), at knee flexion of 60° and 70°, and at different knee angular velocities of 2°/s and 10°/s. The patients were assessed preoperatively and after 4 and 5 months, postoperatively.Research results. Our study has shown that the JPS’s (joint position sense) error scores  to a controlled active movement is significantly higher in injured ACL-deficient knee than in the contralateral knee (normal knee) before surgery and after four and five months of rehabilitation.  After 4 and 5 months of rehabilitation we found significantly lower values in injured knees compared to the preoperative data. Our study has shown that in injured knee active angle reproduction errors after 4 and 5 months of rehabilitation were higher compared with the ones of the uninjured knee. Proprioceptive ability on the both legs was  independent of all differences angles for target and starting position for movement. The knee joint position sense on both legs depends upon the rate of two different angular velocities and the mean active angle reproduction errors at the test of angular velocity slow speed was the highest compared with the fast angular velocity. Discussion and conclusions. In conclusion, our study shows that there was improvement in mean JPS 4 and 5 months after ACL reconstruction, but it did not return to normal indices.Keywords: knee joint, joint position sense, angular velocity, starting position for movement.


2015 ◽  
Vol 11 (1) ◽  
pp. 2960-2971
Author(s):  
M.Abdel Wahab

The Numerical study of the flow of a fluid in the annular region between two eccentric sphere susing PHP Code isinvestigated. This flow is created by considering the inner sphere to rotate with angular velocity 1  and the outer sphererotate with angular velocity 2  about the axis passing through their centers, the z-axis, using the three dimensionalBispherical coordinates (, ,) .The velocity field of fluid is determined by solving equation of motion using PHP Codeat different cases of angular velocities of inner and outer sphere. Also Finite difference code is used to calculate surfacetractions at outer sphere.


2017 ◽  
Vol 828 ◽  
pp. 353-373 ◽  
Author(s):  
Jie Zhang ◽  
Ming-Jiu Ni

It has been demonstrated by many experiments carried out over the last 60 years that in certain liquids a single millimetre-sized bubble will rise within an unstable path, which is sometimes observed to transit from zigzag to spiral. After performing several groups of direct numerical simulations, the present work gives a theoretical explanation to reveal the physical mechanism causing the transition, and the results are presented in two parts. In the first part, in which a freely rising bubble is simulated, equal-strength vortex pairs are observed to shed twice during a period of the pure zigzag path, and this type of motion is triggered by the amounts of streamwise vorticities accumulated on the bubble interface, when a critical value is reached. However, when the balance between the counter-rotating vortices is broken, an angular velocity is induced between the asymmetric vortex pairs, driving the bubble to rise in an opposite spiral path. Therefore, although there is no preference of the spiral direction as observed in experiments, it is actually determined by the sign of the stronger vortex thread. In the second part, external vertical magnetic fields are imposed onto the spirally rising bubble in order to further confirm the relations between the vortex structures and the unstable path patterns. As shown in our previous studies (Zhang & Ni, Phys. Fluids, vol. 26 (10), 2014, 102102), the strength of the double-threaded vortex pairs, as well as the imbalance between them, will be weakened under magnetic fields. Therefore, as the vortex pairs become more symmetric, the rotating radius of the spirally rising bubble is observed to decrease. We try to answer the question, put forward by Shew et al. (2005, Preprint, ENS, Lyon), ‘what caused the bubble to transit from zigzag to spiral naturally?’


2008 ◽  
Vol 24 (3) ◽  
pp. 280-287 ◽  
Author(s):  
Yong “Tai” Wang ◽  
Konstantinos Dino Vrongistinos ◽  
Dali Xu

The purposes of this study were to examine the consistency of wheelchair athletes’ upper-limb kinematics in consecutive propulsive cycles and to investigate the relationship between the maximum angular velocities of the upper arm and forearm and the consistency of the upper-limb kinematical pattern. Eleven elite international wheelchair racers propelled their own chairs on a roller while performing maximum speeds during wheelchair propulsion. A Qualisys motion analysis system was used to film the wheelchair propulsive cycles. Six reflective markers placed on the right shoulder, elbow, wrist joints, metacarpal, wheel axis, and wheel were automatically digitized. The deviations in cycle time, upper-arm and forearm angles, and angular velocities among these propulsive cycles were analyzed. The results demonstrated that in the consecutive cycles of wheelchair propulsion the increased maximum angular velocity may lead to increased variability in the upper-limb angular kinematics. It is speculated that this increased variability may be important for the distribution of load on different upper-extremity muscles to avoid the fatigue during wheelchair racing.


2012 ◽  
Vol 6 (1) ◽  
pp. 53-60
Author(s):  
Tomáš Malý ◽  
František Zahálka ◽  
Lucia Malá ◽  
Jaroslav Teplan

Th e aim of the study was to present isokinetic strength profi le of knee fl exors and extensors during concentric contraction in young soccer players. Particularly in knee fl exors was evaluated also strength during eccentric contraction. Research group was state from young soccer players U17 category (n=19, age=16,4±0,3 years). All of them are the participant of highest junior soccer league. Isokinetic strength was evaluated by isokinetic dynamometr Cybex Humac Norm in following angular velocities: 30, 60 and 120°/s in eccentric contraction and 60, 180, 240 and 300 °/s in concentric contraction. Th e results did not revealed signifi cant diff erences at three diff erent speed levels of knee fl exors’ strength during eccentric contraction (p>0,05). Regarding the concentric contraction we found signifi cant diff erences for strength production depending on angular velocity for both knee extensors and fl exors (p<0,01). Knee fl exors generated more strength during eccentric contraction compared to concentric contraction. Th e strength profi les developed in the present study can assist in the establishment of baseline data in young soccer players or for comparison values with other researchers.


Author(s):  
Gabriel G. Zimmermann ◽  
Samir P. Jasper ◽  
Daniel Savi ◽  
Leonardo L. Kmiecik ◽  
Lauro Strapasson Neto ◽  
...  

ABSTRACT The establishment of grain crops in Brazil is an important industrial process in the agricultural chain, requiring the correct deposition of granular fertilizer over the sowing furrow and more efficient, precise, and sustainable assessments in the operation, which can be achieved with the statistical process control. This study aimed to assess the effect of the angular velocity on different inclinations of the helical metering mechanism on the granular fertilizer deposition. An automated electronic bench was used to assess the deposition quality of granular fertilizers considering different angular velocities (1.11, 1.94, and 2.77 m s-1) and longitudinal and transverse inclinations (+15, +7.5, 0, −7.5, and −15°), with the helical doser by overflow. Flow data were collected and submitted to descriptive statistics and statistical process control. The metering mechanism showed expected variations, with acceptable performance under process control. The values of the flow rates of the granular fertilizer increased as velocity increased, standing out longitudinal inclinations of +7.5 and +15°, providing higher fertilizer depositions.


Author(s):  
Vishesh Vikas ◽  
Carl D. Crane

Knowledge of joint angles, angular velocities is essential for control of link mechanisms and robots. The estimation of joint angles and angular velocity is performed using combination of inertial sensors (accelerometers and gyroscopes) which are contactless and flexible at point of application. Different estimation techniques are used to fuse data from different inertial sensors. Bio-inspired sensors using symmetrically placed multiple inertial sensors are capable of instantaneously measuring joint parameters (joint angle, angular velocities and angular acceleration) without use of any estimation techniques. Calibration of inertial sensors is easier and more reliable for accelerometers as compared to gyroscopes. The research presents gyroscope-less, multiple accelerometer and magnetometer based sensors capable of measuring (not estimating) joint parameters. The contribution of the improved sensor are four-fold. Firstly, the inertial sensors are devoid of symmetry constraint unlike the previously researched bio-inspired sensors. However, the accelerometer are non-coplanarly placed. Secondly, the accelerometer-magnetometer combination sensor allows for calculation of a unique rotation matrix between two link joined by any kind of joint. Thirdly, the sensors are easier to calibrate as they consist only of accelerometers. Finally, the sensors allow for calculation of angular velocity and angular acceleration without use of gyroscopes.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 326 ◽  
Author(s):  
Letícia Avellar ◽  
Arnaldo Leal-Junior ◽  
Carlos Marques ◽  
Anselmo Frizera

This paper presents the analysis of an intensity variation polymer optical fiber (POF)-based angle sensor performance, i.e., sensitivity, hysteresis and determination coefficient ( R 2 ), using cyclic transparent optical polymer (CYTOP) fiber. The analysis consisted of two approaches: influence of different light source central wavelengths (430 nm, 530 nm, 660 nm, 870 nm and 950 nm) and influence of different angular velocities ( 0.70 rad/s, 0.87 rad/s, 1.16 rad/s, 1.75 rad/s and 3.49 rad/s). The first approach aimed to select the source which resulted in the most suitable performance regarding highest sensitivity and linearity while maintaining lowest hysteresis, through the figure of merit. Thereafter, the analysis of different angular velocities was performed to evaluate the influence of velocity in the curvature sensor performance. Then, a discrete angular velocity compensation was proposed in order to reduce the root-mean-square error (RMSE) of responses for different angular velocities. Ten tests for each analysis were performed with angular range of 0 ∘ to 50 ∘ , based on knee and ankle angle range during the gait. The curvature sensor was applied in patterns simulating the knee and ankle during the gait. Results show repeatability and the best sensor performance for λ = 950 nm in the first analysis and show high errors for high angular velocities ( w = 3.49 rad/s) in the second analysis, which presented up to 50 % angular error. The uncompensated RMSE was high for all velocities ( 6.45 ∘ to 12.41 ∘ ), whereas the compensated RMSE decreased up to 74 % ( 1.67 ∘ to 3.62 ∘ ). The compensated responses of application tests showed maximum error of 5.52 ∘ and minimum of 1.06 ∘ , presenting a decrease of mean angular error up to 30 ∘ when compared with uncompensated responses.


Author(s):  
Lenka L. Stepan ◽  
Irving S. Scher ◽  
Reed Thomas

In sailing, the boom comes across the boat during tacks and jibes and has potential to impact a participant’s head and cause injury. To our knowledge, there are no sailing specific helmets on the market in the United States. To determine the effectiveness of a wakeboarding helmet to mitigate the risk of head injury, we measured the boom angular velocity on a 24-foot keel sailboat during controlled jibes. The boom motion was recreated in a laboratory setting and positioned to contact the occiput of the instrumented head of a Hybrid III 50th percentile male anthropometric testing device (ATD). Tests were conducted with an unhelmeted ATD and with an ATD wearing a wakeboarding helmet. Boom angular velocities and head accelerations for unhelmeted impacts were highly correlated (R2 = 0.996). The watersports helmet reduced head accelerations by 52 ± 4% when compared to accelerations from unhelmeted impacts.


Sign in / Sign up

Export Citation Format

Share Document