A Note on the Estimation of Nonlinear System Damping

2003 ◽  
Vol 70 (3) ◽  
pp. 449-450 ◽  
Author(s):  
P. J. Torvik

System damping for a single mode in resonance is often estimated from a measurement of the bandwidth of the frequency response function. While the bandwidth is customarily measured between the half-power frequencies, it is also possible to choose any other fraction of the maximum amplitude. If the damping is linear, i.e., if the loss factor is independent of amplitude, the same damping will be found with any such choice. While intuition might suggest that the damping of a nonlinear system would be better estimated from a bandwidth taken closer to the maximum amplitude, this is shown to be false.

2008 ◽  
Vol 75 (1) ◽  
Author(s):  
S. Adhikari

The characteristics of the frequency response function of a nonviscously damped linear oscillator are considered in this paper. It is assumed that the nonviscous damping force depends on the past history of velocity via a convolution integral over an exponentially decaying kernel function. The classical dynamic response properties, known for viscously damped oscillators, have been generalized to such nonviscously damped oscillators. The following questions of fundamental interest have been addressed: (a) Under what conditions can the amplitude of the frequency response function reach a maximum value?, (b) At what frequency will it occur?, and (c) What will be the value of the maximum amplitude of the frequency response function? Introducing two nondimensional factors, namely, the viscous damping factor and the nonviscous damping factor, we have provided exact answers to these questions. Wherever possible, attempts have been made to relate the new results with equivalent classical results for a viscously damped oscillator. It is shown that the classical concepts based on viscously damped systems can be extended to a nonviscously damped system only under certain conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jialiang Zhang ◽  
Jie Wu ◽  
Xiaoqian Zhang

For fault diagnosis of the two-input two-output mass-spring-damper system, a novel method based on the nonlinear output frequency response function (NOFRF) and multiblock principal component analysis (MBPCA) is proposed. The NOFRF is the extension of the frequency response function of the linear system to the nonlinear system, which can reflect the inherent characteristics of the nonlinear system. Therefore, the NOFRF is used to obtain the original fault feature data. In order to reduce the amount of feature data, a multiblock principal component analysis method is used for fault feature extraction. The least squares support vector machine (LSSVM) is used to construct a multifault classifier. A simplified LSSVM model is adopted to improve the training speed, and the conjugate gradient algorithm is used to reduce the required storage of LSSVM training. A fault diagnosis simulation experiment of a two-input two-output mass-spring-damper system is carried out. The results show that the proposed method has good diagnosis performance, and the training speed of the simplified LSSVM model is significantly higher than the traditional LSSVM.


2010 ◽  
Vol 44-47 ◽  
pp. 719-723 ◽  
Author(s):  
Jian Qiu Chen ◽  
Ping Tan

Shaking table is a nonlinear system, which is a more nonlinear system with payload. System can be usually as linear system nearby working point in control strategy. 1 H -estimator or 2 H -estimator is used for identifying the Frequency Response Function (FRF) of the system. 1 H -estimator is a lower-estimator and 2 H -estimator is an over-estimator, both have large estimating errors. In this paper, a new estimator, m H -estimator, is used for the identification of the shaking table system’s FRF, and whose parameters are estimated by differential evolution (DE) which makes m H closed to the true FRF H . This control strategy can reduce the steps of iterative learning control (ILC) of shaking table system, and the affection of payload characteristic.


Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 89
Author(s):  
Qingxia Zhang ◽  
Jilin Hou ◽  
Zhongdong Duan ◽  
Łukasz Jankowski ◽  
Xiaoyang Hu

Road roughness is an important factor in road network maintenance and ride quality. This paper proposes a road-roughness estimation method using the frequency response function (FRF) of a vehicle. First, based on the motion equation of the vehicle and the time shift property of the Fourier transform, the vehicle FRF with respect to the displacements of vehicle–road contact points, which describes the relationship between the measured response and road roughness, is deduced and simplified. The key to road roughness estimation is the vehicle FRF, which can be estimated directly using the measured response and the designed shape of the road based on the least-squares method. To eliminate the singular data in the estimated FRF, the shape function method was employed to improve the local curve of the FRF. Moreover, the road roughness can be estimated online by combining the estimated roughness in the overlapping time periods. Finally, a half-car model was used to numerically validate the proposed methods of road roughness estimation. Driving tests of a vehicle passing over a known-sized hump were designed to estimate the vehicle FRF, and the simulated vehicle accelerations were taken as the measured responses considering a 5% Gaussian white noise. Based on the directly estimated vehicle FRF and updated FRF, the road roughness estimation, which considers the influence of the sensors and quantity of measured data at different vehicle speeds, is discussed and compared. The results show that road roughness can be estimated using the proposed method with acceptable accuracy and robustness.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 144
Author(s):  
Yan Zhang ◽  
Jijian Lian ◽  
Songhui Li ◽  
Yanbing Zhao ◽  
Guoxin Zhang ◽  
...  

Ground vibrations induced by large flood discharge from a dam can damage surrounding buildings and impact the quality of life of local residents. If ground vibrations could be predicted during flood discharge, the ground vibration intensity could be mitigated by controlling or tuning the discharge conditions by, for example, changing the flow rate, changing the opening method of the orifice, and changing the upstream or downstream water level, thereby effectively preventing damage. This study proposes a prediction method with a modified frequency response function (FRF) and applies it to the in situ measured data of Xiangjiaba Dam. A multiple averaged power spectrum FRF (MP-FRF) is derived by analyzing four major factors when the FRF is used: noise, system nonlinearity, spectral leakages, and signal latency. The effects of the two types of vibration source as input are quantified. The impact of noise on the predicted amplitude is corrected based on the characteristics of the measured signal. The proposed method involves four steps: signal denoising, MP-FRF estimation, vibration prediction, and noise correction. The results show that when the vibration source and ground vibrations are broadband signals and two or more bands with relative high energies, the frequency distribution of ground vibration can be predicted with MP-FRF by filtering both the input and output. The amplitude prediction loss caused by filtering can be corrected by adding a constructed white noise signal to the prediction result. Compared with using the signal at multiple vibration sources after superimposed as input, using the main source as input improves the accuracy of the predicted frequency distribution. The proposed method can predict the dominant frequency and the frequency bands with relative high energies of the ground vibration downstream of Xiangjiaba Dam. The predicted amplitude error is 9.26%.


2020 ◽  
Vol 36 (6) ◽  
pp. 867-879
Author(s):  
X. H. Liao ◽  
W. F. Wu ◽  
H. D. Meng ◽  
J. B. Zhao

ABSTRACTTo evaluate the dynamic properties of a coupled structure based on the dynamic properties of its substructures, this paper investigates the dynamic substructuring issue from the perspective of response prediction. The main idea is that the connecting forces at the interface of substructures can be expressed by the unknown coupled structural responses, and the responses can be solved rather easily. Not only rigidly coupled structures but also resiliently coupled structures are investigated. In order to further comprehend and visualize the nature of coupling problems, the Neumann series expansion for a matrix describing the relation between the coupled and uncoupled substructures is also introduced in this paper. Compared with existing response prediction methods, the proposed method does not have to measure any forces, which makes it easier to apply than the others. Clearly, the frequency response function matrix of coupled structures can be derived directly based on the response prediction method. Compared with existing frequency response function synthesis methods, it is more straightforward and comprehensible. Through demonstration of two examples, it is concluded that the proposed method can deal with structural coupling problems very well.


Sign in / Sign up

Export Citation Format

Share Document