An Air Curtain Along a Wall With High Inlet Turbulence

2004 ◽  
Vol 126 (3) ◽  
pp. 391-398 ◽  
Author(s):  
Brandon S. Field ◽  
Eric Loth

A downward blowing isothermal wall jet at moderate Reynolds numbers (1,500 to 8,500) with significant inflow turbulence (ca. 6%) was investigated. The flow configuration is an idealization of the air curtains of refrigerated display cases. Flow visualization using particle seeding was employed to identify the flow field eddy dynamics. Particle Image Velocimetry was used to examine the velocity fields in terms of mean and fluctuating values. These diagnostics showed that the air curtain entrainment was dominated by a large variety of eddies that engulfed ambient air into the air curtain. The velocity fields generally showed linear spreading, significant deceleration and high turbulence levels (ca. 25%). It was observed that the air curtain dynamics, velocity fields and growth were not significantly sensitive to Reynolds number variation between Re=3,800 and Re=8,500. However, at low air velocities (Re=1,500), the curtain was found to detach, leading to a large air curtain thickness and high curtain entrainment.

Author(s):  
Mary V. Holloway ◽  
Heather L. McClusky ◽  
Donald E. Beasley

The present experimental study investigates the interaction and downstream development of two localized swirling flow structures created using a tangential injection method. A swirl generator is placed at the inlet of a 52.1 mm diameter pipe. The swirl generator consists of two swirl chambers with inner diameters of 23.8 mm. Each swirl chamber has a design swirl number of 7.14. Water is injected into each swirl chamber by two tangential injection ports. The injection ports are tangent to the swirl chamber and perpendicular to the axis of the pipe. The two co-rotating vortices created in the swirl generator interact freely within the pipe downstream of the swirl generator. The objective of the present study is to document the interaction between the two vortices and the downstream development of the flow. Lateral velocity fields are obtained using particle image velocimetry (PIV). Time-averaged lateral velocity fields and tangential velocity profiles are presented for several axial locations downstream of the swirl generator. Reynolds numbers of 11,000 and 17,000 are investigated. Results document the streamwise development and interaction between the two co-rotating vortices created by tangential injection. As the two swirling structures develop in the streamwise direction, three different types of flow patterns are identified. The first consists of two distinct swirling flow structures. Further downstream of the swirl chamber, the two swirling structures merge and form a single swirling flow structure with an elliptic core. In the third flow pattern, the center core of the swirling flow has a circular shape.


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Douglas Bohl ◽  
Akshey Mehta ◽  
Naratip Santitissadeekorn ◽  
Erik Bollt

The flow field in a cylindrical container driven by a flat bladed impeller was investigated using particle image velocimetry (PIV). Three Reynolds numbers (0.02, 8, 108) were investigated for different impeller locations within the cylinder. The results showed that vortices were formed at the tips of the blades and rotated with the blades. As the blades were placed closer to the wall the vortices interacted with the induced boundary layer on the wall to enhance both regions of vorticity. Finite time lyapunov exponents (FTLE) were used to determine the lagrangian coherent structure (LCS) fields for the flow. These structures highlighted the regions where mixing occurred as well as barriers to fluid transport. Mixing was estimated using zero mass particles convected by numeric integration of the experimentally derived velocity fields. The mixing data confirmed the location of high mixing regions and barriers shown by the LCS analysis. The results indicated that mixing was enhanced within the region described by the blade motion as the blade was positioned closed to the cylinder wall. The mixing average within the entire tank was found to be largely independent of the blade location and flow Reynolds number.


Author(s):  
C J Bates ◽  
D M O'Doherty ◽  
D Williams

The major cause of arterial bypass graft failure is intimal hyperplasia. Fluctuating wall shear stresses in the graft, which are associated with disturbed flow, are believed to be important factors in the development and localization of intimal hyperplasia. This study, based upon water as the working fluid, has investigated the flow structure inside a 30° Y-junction with different fillet radii at the intersection between the graft and the host artery at various Reynolds numbers and distal outlet segment (DOS) to proximal outlet segment (POS) flow ratios. The structure of the flow has been investigated experimentally using particle image velocimetry (PIV). The two-dimensional instantaneous velocity fields confirm the existence of a very complex flow, especially in the toe and heel regions for the different fillet radii and clearly identify features such as sinks, sources, vortices and strong time dependency.


Author(s):  
Robert J. Boyle ◽  
Louis M. Russell

Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane passage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Results were obtained for Reynolds numbers based on inlet velocity and axial chord between 73,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1205
Author(s):  
Ruiqi Wang ◽  
Riqiang Duan ◽  
Haijun Jia

This publication focuses on the experimental validation of film models by comparing constructed and experimental velocity fields based on model and elementary experimental data. The film experiment covers Kapitza numbers Ka = 278.8 and Ka = 4538.6, a Reynolds number range of 1.6–52, and disturbance frequencies of 0, 2, 5, and 7 Hz. Compared to previous publications, the applied methodology has boundary identification procedures that are more refined and provide additional adaptive particle image velocimetry (PIV) method access to synthetic particle images. The experimental method was validated with a comparison with experimental particle image velocimetry and planar laser induced fluorescence (PIV/PLIF) results, Nusselt’s theoretical prediction, and experimental particle tracking velocimetry (PTV) results of flat steady cases, and a good continuity equation reproduction of transient cases proves the method’s fidelity. The velocity fields are reconstructed based on different film flow model velocity profile assumptions such as experimental film thickness, flow rates, and their derivatives, providing a validation method of film model by comparison between reconstructed velocity experimental data and experimental velocity data. The comparison results show that the first-order weighted residual model (WRM) and regularized model (RM) are very similar, although they may fail to predict the velocity field in rapidly changing zones such as the front of the main hump and the first capillary wave troughs.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 47-55
Author(s):  
N.-S. Park ◽  
H. Park

Recognizing the significance of factual velocity fields in a rapid mixer, this study focuses on analyzing local velocity gradients in various mixer geometries with particle image velocimetry (PIV) and comparing the results of the analysis with the conventional G-value, for reviewing the roles of G-value in the current design and operation practices. The results of this study clearly show that many arguments and doubts are possible about the scientific correctness of G-value, and its current use. This is because the G-value attempts to represent the turbulent and complicated factual velocity field in a jar. Also, the results suggest that it is still a good index for representing some aspects of mixing condition, at least, mixing intensity. However, it cannot represent the distribution of velocity gradients in a jar, which is an important factor for mixing. This study as a result suggests developing another index for representing the distribution to be used with the G-value.


2016 ◽  
Vol 13 (116) ◽  
pp. 20160068 ◽  
Author(s):  
Gen Li ◽  
Ulrike K. Müller ◽  
Johan L. van Leeuwen ◽  
Hao Liu

Larvae of bony fish swim in the intermediate Reynolds number ( Re ) regime, using body- and caudal-fin undulation to propel themselves. They share a median fin fold that transforms into separate median fins as they grow into juveniles. The fin fold was suggested to be an adaption for locomotion in the intermediate Reynolds regime, but its fluid-dynamic role is still enigmatic. Using three-dimensional fluid-dynamic computations, we quantified the swimming trajectory from body-shape changes during cyclic swimming of larval fish. We predicted unsteady vortices around the upper and lower edges of the fin fold, and identified similar vortices around real larvae with particle image velocimetry. We show that thrust contributions on the body peak adjacent to the upper and lower edges of the fin fold where large left–right pressure differences occur in concert with the periodical generation and shedding of edge vortices. The fin fold enhances effective flow separation and drag-based thrust. Along the body, net thrust is generated in multiple zones posterior to the centre of mass. Counterfactual simulations exploring the effect of having a fin fold across a range of Reynolds numbers show that the fin fold helps larvae achieve high swimming speeds, yet requires high power. We conclude that propulsion in larval fish partly relies on unsteady high-intensity vortices along the upper and lower edges of the fin fold, providing a functional explanation for the omnipresence of the fin fold in bony-fish larvae.


Author(s):  
Heinz-Adolf Schreiber ◽  
Wolfgang Steinert ◽  
Bernhard Küsters

An experimental and analytical study has been performed on the effect of Reynolds number and free-stream turbulence on boundary layer transition location on the suction surface of a controlled diffusion airfoil (CDA). The experiments were conducted in a rectilinear cascade facility at Reynolds numbers between 0.7 and 3.0×106 and turbulence intensities from about 0.7 to 4%. An oil streak technique and liquid crystal coatings were used to visualize the boundary layer state. For small turbulence levels and all Reynolds numbers tested the accelerated front portion of the blade is laminar and transition occurs within a laminar separation bubble shortly after the maximum velocity near 35–40% of chord. For high turbulence levels (Tu > 3%) and high Reynolds numbers transition propagates upstream into the accelerated front portion of the CDA blade. For those conditions, the sensitivity to surface roughness increases considerably and at Tu = 4% bypass transition is observed near 7–10% of chord. Experimental results are compared to theoretical predictions using the transition model which is implemented in the MISES code of Youngren and Drela. Overall the results indicate that early bypass transition at high turbulence levels must alter the profile velocity distribution for compressor blades that are designed and optimized for high Reynolds numbers.


Author(s):  
S C M Yu ◽  
J B Zhao

Flow characteristics in straight tubes with an asymmetric bulge have been investigated using particle image velocimetry (PIV) over a range of Reynolds numbers from 600 to 1200 and at a Womersley number of 22. A mixture of glycerine and water (approximately 40:60 by volume) was used as the working fluid. The study was carried out because of their relevance in some aspects of physiological flows, such as arterial flow through a sidewall aneurysm. Results for both steady and pulsatile flow conditions were obtained. It was found that at a steady flow condition, a weak recirculating vortex formed inside the bulge. The recirculation became stronger at higher Reynolds numbers but weaker at larger bulge sizes. The centre of the vortex was located close to the distal neck. At pulsatile flow conditions, the vortex appeared and disappeared at different phases of the cycle, and the sequence was only punctuated by strong forward flow behaviour (near the peak flow condition). In particular, strong flow interactions between the parent tube and the bulge were observed during the deceleration phase. Stents and springs were used to dampen the flow movement inside the bulge. It was found that the recirculation vortex could be eliminated completely in steady flow conditions using both devices. However, under pulsatile flow conditions, flow velocities inside the bulge could not be suppressed completely by both devices, but could be reduced by more than 80 per cent.


2001 ◽  
Vol 44 (9) ◽  
pp. 165-171 ◽  
Author(s):  
M. Pavageau ◽  
E.M. Nieto ◽  
C. Rey

Experiments were conducted on a two stream air-curtain prototype designed for VOC and odour confinement in a truck unloading area. The emphasis was placed on the air supply device. Measurements using tracer gas techniques were performed to assess the effectiveness of the system in terms of air tightness. Leakage flow rate was estimated for various feeding arrangements. Flow visualisations and particle image velocimetry measurements were carried out for a better understanding of the flow dynamics. Evidence was given of the improvements brought by the herein referred to, “double flux” configuration in comparison to traditional designs. After a brief description of the experimental facility and the basic principle underlying the approach developed, the main results are reported and discussed and recommendations are drawn. Considerations about where the effort will be directed in future works are provided.


Sign in / Sign up

Export Citation Format

Share Document