A New Type Controllable Squeeze Film Damper Using an Electromagnet

2004 ◽  
Vol 126 (3) ◽  
pp. 380-383 ◽  
Author(s):  
Young Kong Ahn ◽  
Jong-Yong Ha ◽  
Bo-Suk Yang

The paper presents stability of a rotor system with a squeeze film damper (SFD) using an electromagnet. The electromagnet is installed in the inner damper of the SFD. The proposed SFD has basically the property of a conventional SFD and variable damping according to the strength of the applied electric current. Therefore, when the applied current is controlled, the whirling amplitude of the rotor system can be effectively reduced in a wide operational speed range. In the present work, the performance of the SFD was experimentally investigated according to the magnetic field strength. When the applied current increased, the whirling amplitude greatly reduced at the critical speeds and damping ratio increased. © 2004 American Institute of Physics.

Author(s):  
T. N. Shiau ◽  
C. R. Wang ◽  
D. S. Liu ◽  
W. C. Hsu ◽  
T. H. Young

An investigation is carried out the analysis of nonlinear dynamic behavior on effects of rub-impact caused by oil-rupture in a multi-shafts turbine system with a squeeze film damper. Main components of a multi-shafts turbine system includes an outer shaft, an inner shaft, an impeller shaft, ball bearings and a squeeze film damper. In the squeeze film damper, oil forces can be derived from the short bearing approximation and cavitated film assumption. The system equations of motion are formulated by the global assumed mode method (GAMM) and Lagrange’s approach. The nonlinear behavior of a multi-shafts turbine system which includes the trajectories in time domain, frequency spectra, Poincaré maps, and bifurcation diagrams are investigated. Numerical results show that large vibration amplitude is observed in steady state at rotating speed ratio adjacent to the first natural frequency when there is no squeeze film damper. The nonlinear dynamic behavior of a multi-shafts turbine system goes in its way into aperiodic motion due to oil-rupture and it is unlike the usual way (1T = >2T = >4T = >8T etc) as compared to one shaft rotor system. The typical routes of bifurcation to aperiodic motion are observed in a multi-shafts turbine rotor system and they suddenly turn into aperiodic motion from the periodic motion without any transition. Consequently, the increasing of geometric or oil parameters such as clearance or lubricant viscosity will improve the performance of SFD bearing.


2021 ◽  
Author(s):  
Ying Cui ◽  
Yuxi Huang ◽  
Guogang Yang ◽  
Yongliang Wang ◽  
Han Zhang

Abstract A nonlinear multi-degree-of-freedom dynamic model of a coupled dual-rotor system with an intershaft bearing and uncentralized squeeze film damper is established by using finite element method. Based on the model, the critical speed characteristic diagram and vibration modes of the system were calculated. The steady-state unbalance response is obtained by using Newmark-β algorithm. The numerical results show the effect of SFD position in the dual-rotor system on response amplitude. It is found that with the decrease of radial clearance and the increase of length-diameter ratio and lubricating oil viscosity, the damping effect of SFD is enhanced and the bistable state phenomenon can be suppressed. The transient response of the system in case of sudden unbalance occurring at the fan was simulated by applying a step function. It is demonstrated that the SFD can effectively reduce the duration and maximum amplitude of the transient process, but at certain speeds, the SFD will increase the amplitude after the system returns to steady state, the damping effect on the transient response is also enhanced with the increase of length-diameter and the decrease of radial clearance, and with the increase of the sudden unbalance value, the response is more likely to stabilized at the high amplitude state of the bistable state.


Author(s):  
Qihan Li ◽  
James F. Hamilton

A method is presented for calculating the dynamics of a dual-rotor gas turbine engine equipped with a flexible intershaft squeeze-film damper. The method is based on the functional expansion component synthesis method. The transient response of the rotor due to a suddenly applied unbalance in the high-pressure turbine under different steady-speed operations is calculated. The damping effects of the intershaft damper and stability of the rotor system are investigated.


2015 ◽  
Vol 23 (11) ◽  
pp. 1792-1808 ◽  
Author(s):  
Mostafa Irannejad ◽  
Abdolreza Ohadi

Squeeze film dampers are widely used to reduce the vibration of rotating systems. Using magnetorheological fluid in these dampers can lead to a variable-damping damper called Magnetorheological Squeeze Film Damper (MRSFD). Magnetorheological fluid viscosity alter under different values of magnetic field. The previous research have widely used long bearing approximation to derive the equations governing the hydrodynamic behavior of MRSFDs. In this paper, the behavior of MRSFDs has been studied using short bearing approximation. Next, the effects of MRSFDs on the dynamic behavior of a flexible rotor have been studied, using finite element method (FEM). Synchronous whirl motion has not been imposed on the system behavior, as an external assumption. Damper pressure distribution and forces, dynamic trajectories, eccentricity and the frequency response of the rotor are tools used to analyze the dynamic behavior of MRSFDs and rotor system. As the results show, it seems to be more precise to use short bearing approximation to analyze dampers with aspect ratios lower than a limit (especially L/D < 1). Furthermore, by controlling electrical current one can control the dynamic behavior of a rotor, to avoid failure and damage. Finally, the whirl motion of the rotor was observed to remain synchronous, even when fluid forces are present.


2005 ◽  
Vol 128 (2) ◽  
pp. 176-183 ◽  
Author(s):  
Her-Terng Yau ◽  
Chieh-Li Chen

When a squeeze-film damper-mounted rigid rotor system is operated eccentrically, the nonlinear forces are no longer radially symmetric and a disordered dynamical behavior (i.e., quasi-periodic and chaotic vibration) will occur. To suppress the undesired vibration characteristics, the hybrid squeeze-film damper bearing consisting of hydrostatic chambers and hydrodynamic ranges is proposed. In order to change the pressure in hydrostatic chambers, two pairs of electric-hydraulic orifices are used in this paper. The dynamic model of the system is established with the consideration of the electric-hydraulic actuator. The complex nonsynchronous vibration of squeeze-film dampers rotor-bearing system is demonstrated to be stabilized by such electric-hydraulic orifices actuators with proportional-plus-derivative (PD) controllers. Numerical results show that the nonchaotic operation range of the system will be increased by tuning the control loop gain.


1999 ◽  
Vol 122 (1) ◽  
pp. 7-11 ◽  
Author(s):  
Yao Guozhi ◽  
Yap Fook Fah ◽  
Chen Guang ◽  
Meng Guang ◽  
Fang Tong ◽  
...  

In this paper, a new electro-rheological multi-layer squeeze film damper (ERMSFD in short) is designed first and the constitutional Reynolds equation is established. Then the behavior of the rotor system is analyzed, the vibration around the first critical speed is suppressed and an on/off control is proposed to control the large amplitude around the first critical speed. A control method is used to suppress the sudden unbalance response. Finally, experiments are carried out to investigate the behavior of the rotor system to prove the effectiveness of the ER damper to suppress the vibration around the critical speed and the sudden unbalance response. [S0739-3717(00)00301-9]


Author(s):  
H. Kanki ◽  
Y. Kaneko ◽  
M. Kurosawa ◽  
T. Yamamoto

The cause of the low-frequency vibration (subsynchronous vibration) of a high pressure turbine was investigated by the analytical study and vibration exciting test for the actual machine in operation. From the results, it is found that the low-frequency vibration is caused by the decrease of the rotor system damping at high-loading operating conditions. As a countermeasure, a squeeze-film damper is designed in order to increase the damping of the rotor system. After the verification test of the squeeze-film damper’s capability in the workshop, it was installed on the actual turbine. Vibration exciting tests for the high pressure turbine under the actual operating conditions were carried out. These field tests confirmed that the damping of the rotor system was increased as expected in the design and consequently the low-frequency vibrations disappeared completely under all operating conditions.


2011 ◽  
Vol 130-134 ◽  
pp. 594-598
Author(s):  
Hai Bing Jiang ◽  
Jian Ruan ◽  
Ming Ming Wu ◽  
Tao Wang

A new type of squeeze film damper (SFD) is designed to reduce spool’s impact and vibration which happen in the two-stage larger flow rate high-speed on/off valve with the 450 L/min flow rate and 8ms turn-off time, the valve’s sealing performance、reliability and service life improve largely, and the valve’s response speed doesn’t drop. The simulated and experimental results show: The damper has optimum buffering performance when oil film thickness is 0.1mm, and the spool closing process approach ideal state. The valve will has a great potential application in the powerful occasions because of it's perfect performance: larger flow rate、fast response and novel damper.


Sign in / Sign up

Export Citation Format

Share Document