Vibration analysis of a rotor supported on magnetorheological squeeze film damper with short bearing approximation: A contrast between short and long bearing approximations

2015 ◽  
Vol 23 (11) ◽  
pp. 1792-1808 ◽  
Author(s):  
Mostafa Irannejad ◽  
Abdolreza Ohadi

Squeeze film dampers are widely used to reduce the vibration of rotating systems. Using magnetorheological fluid in these dampers can lead to a variable-damping damper called Magnetorheological Squeeze Film Damper (MRSFD). Magnetorheological fluid viscosity alter under different values of magnetic field. The previous research have widely used long bearing approximation to derive the equations governing the hydrodynamic behavior of MRSFDs. In this paper, the behavior of MRSFDs has been studied using short bearing approximation. Next, the effects of MRSFDs on the dynamic behavior of a flexible rotor have been studied, using finite element method (FEM). Synchronous whirl motion has not been imposed on the system behavior, as an external assumption. Damper pressure distribution and forces, dynamic trajectories, eccentricity and the frequency response of the rotor are tools used to analyze the dynamic behavior of MRSFDs and rotor system. As the results show, it seems to be more precise to use short bearing approximation to analyze dampers with aspect ratios lower than a limit (especially L/D < 1). Furthermore, by controlling electrical current one can control the dynamic behavior of a rotor, to avoid failure and damage. Finally, the whirl motion of the rotor was observed to remain synchronous, even when fluid forces are present.

2020 ◽  
Vol 21 (6) ◽  
pp. 619
Author(s):  
Kostandin Gjika ◽  
Antoine Costeux ◽  
Gerry LaRue ◽  
John Wilson

Today's modern internal combustion engines are increasingly focused on downsizing, high fuel efficiency and low emissions, which requires appropriate design and technology of turbocharger bearing systems. Automotive turbochargers operate faster and with strong engine excitation; vibration management is becoming a challenge and manufacturers are increasingly focusing on the design of low vibration and high-performance balancing technology. This paper discusses the synchronous vibration management of the ball bearing cartridge turbocharger on high-speed balancer and it is a continuation of papers [1–3]. In a first step, the synchronous rotordynamics behavior is identified. A prediction code is developed to calculate the static and dynamic performance of “ball bearing cartridge-squeeze film damper”. The dynamic behavior of balls is modeled by a spring with stiffness calculated from Tedric Harris formulas and the damping is considered null. The squeeze film damper model is derived from the Osborne Reynolds equation for incompressible and synchronous fluid loading; the stiffness and damping coefficients are calculated assuming that the bearing is infinitely short, and the oil film pressure is modeled as a cavitated π film model. The stiffness and damping coefficients are integrated on a rotordynamics code and the bearing loads are calculated by converging with the bearing eccentricity ratio. In a second step, a finite element structural dynamics model is built for the system “turbocharger housing-high speed balancer fixture” and validated by experimental frequency response functions. In the last step, the rotating dynamic bearing loads on the squeeze film damper are coupled with transfer functions and the vibration on the housings is predicted. The vibration response under single and multi-plane unbalances correlates very well with test data from turbocharger unbalance masters. The prediction model allows a thorough understanding of ball bearing turbocharger vibration on a high speed balancer, thus optimizing the dynamic behavior of the “turbocharger-high speed balancer” structural system for better rotordynamics performance identification and selection of the appropriate balancing process at the development stage of the turbocharger.


2018 ◽  
Vol 180 ◽  
pp. 02091
Author(s):  
Dominik Šedivý ◽  
Petr Ferfecki ◽  
Simona Fialová

This article presents the evaluation of force effects on squeeze film damper rotor. The rotor is placed eccentrically and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were measured by using computational modeling. Damper was filled with magnetorheological fluid. Viscosity of this non-Newtonian fluid is given using Bingham rheology model. Yield stress is not constant and it is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width between rotor and stator. The simulations were made in finite volume method based solver. The motion of the inner ring of squeeze film damper was carried out by dynamic mesh. Numerical solution was solved for five different initial eccentricities and angular velocities of rotor motion.


Author(s):  
T. N. Shiau ◽  
C. R. Wang ◽  
D. S. Liu ◽  
W. C. Hsu ◽  
T. H. Young

An investigation is carried out the analysis of nonlinear dynamic behavior on effects of rub-impact caused by oil-rupture in a multi-shafts turbine system with a squeeze film damper. Main components of a multi-shafts turbine system includes an outer shaft, an inner shaft, an impeller shaft, ball bearings and a squeeze film damper. In the squeeze film damper, oil forces can be derived from the short bearing approximation and cavitated film assumption. The system equations of motion are formulated by the global assumed mode method (GAMM) and Lagrange’s approach. The nonlinear behavior of a multi-shafts turbine system which includes the trajectories in time domain, frequency spectra, Poincaré maps, and bifurcation diagrams are investigated. Numerical results show that large vibration amplitude is observed in steady state at rotating speed ratio adjacent to the first natural frequency when there is no squeeze film damper. The nonlinear dynamic behavior of a multi-shafts turbine system goes in its way into aperiodic motion due to oil-rupture and it is unlike the usual way (1T = >2T = >4T = >8T etc) as compared to one shaft rotor system. The typical routes of bifurcation to aperiodic motion are observed in a multi-shafts turbine rotor system and they suddenly turn into aperiodic motion from the periodic motion without any transition. Consequently, the increasing of geometric or oil parameters such as clearance or lubricant viscosity will improve the performance of SFD bearing.


Author(s):  
J X Zhang

Approximate expressions are obtained for static fluid pressure and force for a centrally grooved squeeze film damper (SFD) resting at an equilibrium position without vibration. The analysis shows that, to some extent, grooved SFDs may share some characteristics with hydrostatic bearings, due to the existence of the lubricant supply pressure. Thus static fluid force and hence oil stiffness may exist in SFDs, in addition to the conventional inertial and damping coefficients for SFDs. This paper is solely focused on the static fluid forces and oil stiffness generated in an SFD with a finite length groove. Flow continuity is used at the centre of the groove, which takes into account the effects of the inlet oil flowrate and oil supply pressure. This use of flow continuity differs substantially from the traditional use of constant pressure in the central groove, and it provides better results. At the interface between the groove and the thin film land, a step bearing model with ignored fluid inertia is employed. It is verified by both the theory and previous experiments that the static fluid force and stiffness are linearly proportional to both the lubricant supply pressure and the eccentricity ratio of the SFD journal.


1980 ◽  
Vol 102 (1) ◽  
pp. 51-58 ◽  
Author(s):  
D. L. Taylor ◽  
B. R. K. Kumar

This paper considers the methodology of numerical integration for prediction of dynamic response of squeeze film damper systems. A planar rotor carried in a squeeze film damper with linear centering spring is considered. Governing differential equations are expressed in polar coordinates, and fluid forces are obtained from the Ocvirk short bearing integrals. The rotating unbalance response is presented as a function of speed, unbalance, and a bearing parameter. Runge Kutta integration techniques are used to obtain numerical solutions for transient response and frequency response. The 2π film approximation results in almost linear frequency response curves. However, the π film response is very nonlinear, demonstrating the well known multiple valued response and associated hardening jump/drop phenomenon. The π film transient response is analyzed within the speed range of bistable operation to determine the effects of initial conditions, the domains of convergence, and the relative strengths of stability of each solution. The transient response is found to be most sensitive to initial values of phase angle and phase angle velocity. Initial eccentricity and eccentric velocity are much less important. In general, of the two steady state solutions, the one with lower eccentricity appears to be more stable, with a larger domain of convergence. Examples show how premature termination of the integration can lead to erroneous conclusions.


Author(s):  
G. Meng ◽  
L. A. San Andres ◽  
J. M. Vance

Abstract The influence of rotational speed, oil temperature and supply pressure on the squeeze film pressure and fluid forces is investigated experimentally for a partially sealed squeeze film damper (SFD) test rig executing circular centered orbits. Experimental Tesults show that the sealed damper produces higher damping forces than an open end SFD, though it is more prone to produce oil cavitation. As a result, the peak-to-peak pressures and the tangential force (damping force) decrease with increasing rotational speed; while, the radial force (stiffhening force) becomes negative due to the large extent of the cavitation zone. The tangential force decreases and the radial force increases with increasing lubricant temperature. The squeeze film pressure and film force increase as the supply pressure rises. The film cavitation onset is determined by the level of supply pressure and rotational speed.


2004 ◽  
Vol 126 (3) ◽  
pp. 380-383 ◽  
Author(s):  
Young Kong Ahn ◽  
Jong-Yong Ha ◽  
Bo-Suk Yang

The paper presents stability of a rotor system with a squeeze film damper (SFD) using an electromagnet. The electromagnet is installed in the inner damper of the SFD. The proposed SFD has basically the property of a conventional SFD and variable damping according to the strength of the applied electric current. Therefore, when the applied current is controlled, the whirling amplitude of the rotor system can be effectively reduced in a wide operational speed range. In the present work, the performance of the SFD was experimentally investigated according to the magnetic field strength. When the applied current increased, the whirling amplitude greatly reduced at the critical speeds and damping ratio increased. © 2004 American Institute of Physics.


Sign in / Sign up

Export Citation Format

Share Document