scholarly journals Heat Sink Sunk

2017 ◽  
Vol 139 (01) ◽  
pp. 40-45
Author(s):  
Alan S. Brown

This article explores various innovative ways that technology companies are working upon to deal with the large amount of heat of their big data centers. Microsoft’s research and development team is working on designing and building of an underwater data center. Researchers believe that underwater data centers might have power, construction, and performance advantages as well. Berkeley’s National Energy Research Scientific Computing Center (NERSC) recycles its chilled water. NERSC uses air to chill the data center and cooler-running components, such as disk drives, routers, and network servers. With the growing efficiency of data centers, better cooling might not be enough to make underwater operations worthwhile. But cooling is only one of the advantages that Microsoft sees in submerging its data centers. Submersibles also simplify deployment. Microsoft used an underwater cable connected to the electrical grid to power Leona Philpot, a submersible data center. In the future, it may reduce costs through renewable energy, combined with on-site energy storage and backup power from the grid.

2014 ◽  
Vol 2014 (1) ◽  
pp. 000862-000865 ◽  
Author(s):  
Tolga Tekin ◽  
Andreas Hakansson ◽  
Nikos Pleros ◽  
Dimitris Apostolopoulos

Power consumption, cost and performance appear as the main metrics in next-generation Data Center. PhoxTroT has been conceived to address optical interconnects at a holistic way among all hierarchy levels: chip-to-chip, board-to-board, rack-to-rack.


2018 ◽  
Vol 7 (4.15) ◽  
pp. 315
Author(s):  
Tehmina Karamat Khan ◽  
Mohsin Tanveer ◽  
Asadullah Shah

Industrial and academic communities have been trying to get more computational power out of their investments. Data centers have recently received huge attention due to its increased business value and achievable scalability on public/private clouds. Infra-structure and applications of modern data center is being virtualized to achieve energy efficient operation on servers. Despite of data center advantages on performance, there is a tradeoff between power and performance especially with cloud data centers. Today, these cloud application-based organizations are facing many energy related challenges. In this paper, through survey it has been analyzed how virtualization and networking related challenges affects energy efficiency of data center with suggested optimization strategies. 


Author(s):  
Chris Muller ◽  
Chuck Arent ◽  
Henry Yu

Abstract Lead-free manufacturing regulations, reduction in circuit board feature sizes and the miniaturization of components to improve hardware performance have combined to make data center IT equipment more prone to attack by corrosive contaminants. Manufacturers are under pressure to control contamination in the data center environment and maintaining acceptable limits is now critical to the continued reliable operation of datacom and IT equipment. This paper will discuss ongoing reliability issues with electronic equipment in data centers and will present updates on ongoing contamination concerns, standards activities, and case studies from several different locations illustrating the successful application of contamination assessment, control, and monitoring programs to eliminate electronic equipment failures.


Solar Energy ◽  
2020 ◽  
Vol 212 ◽  
pp. 258-274
Author(s):  
C. Zomer ◽  
I. Custódio ◽  
S. Goulart ◽  
S. Mantelli ◽  
G. Martins ◽  
...  

2017 ◽  
Vol 19 (1) ◽  
pp. 4-10 ◽  
Author(s):  
Maria Anna Jankowska ◽  
Piotr Jankowski

The article presents the Idaho Geospatial Data Center (IGDC), a digital library of public-domain geographic data for the state of Idaho. The design and implementation of IGDC are introduced as part of the larger context of a geolibrary model. The article presents methodology and tools used to build IGDC with the focus on a geolibrary map browser. The use of IGDC is evaluated from the perspective of accessa and demand for geographic data. Finally, the article offers recommendations for future development of geospatial data centers.


Author(s):  
Tianyi Gao ◽  
James Geer ◽  
Bahgat G. Sammakia ◽  
Russell Tipton ◽  
Mark Seymour

Cooling power constitutes a large portion of the total electrical power consumption in data centers. Approximately 25%∼40% of the electricity used within a production data center is consumed by the cooling system. Improving the cooling energy efficiency has attracted a great deal of research attention. Many strategies have been proposed for cutting the data center energy costs. One of the effective strategies for increasing the cooling efficiency is using dynamic thermal management. Another effective strategy is placing cooling devices (heat exchangers) closer to the source of heat. This is the basic design principle of many hybrid cooling systems and liquid cooling systems for data centers. Dynamic thermal management of data centers is a huge challenge, due to the fact that data centers are operated under complex dynamic conditions, even during normal operating conditions. In addition, hybrid cooling systems for data centers introduce additional localized cooling devices, such as in row cooling units and overhead coolers, which significantly increase the complexity of dynamic thermal management. Therefore, it is of paramount importance to characterize the dynamic responses of data centers under variations from different cooling units, such as cooling air flow rate variations. In this study, a detailed computational analysis of an in row cooler based hybrid cooled data center is conducted using a commercially available computational fluid dynamics (CFD) code. A representative CFD model for a raised floor data center with cold aisle-hot aisle arrangement fashion is developed. The hybrid cooling system is designed using perimeter CRAH units and localized in row cooling units. The CRAH unit supplies centralized cooling air to the under floor plenum, and the cooling air enters the cold aisle through perforated tiles. The in row cooling unit is located on the raised floor between the server racks. It supplies the cooling air directly to the cold aisle, and intakes hot air from the back of the racks (hot aisle). Therefore, two different cooling air sources are supplied to the cold aisle, but the ways they are delivered to the cold aisle are different. Several modeling cases are designed to study the transient effects of variations in the flow rates of the two cooling air sources. The server power and the cooling air flow variation combination scenarios are also modeled and studied. The detailed impacts of each modeling case on the rack inlet air temperature and cold aisle air flow distribution are studied. The results presented in this work provide an understanding of the effects of air flow variations on the thermal performance of data centers. The results and corresponding analysis is used for improving the running efficiency of this type of raised floor hybrid data centers using CRAH and IRC units.


Author(s):  
Amip J. Shah ◽  
Van P. Carey ◽  
Cullen E. Bash ◽  
Chandrakant D. Patel

Data centers today contain more computing and networking equipment than ever before. As a result, a higher amount of cooling is required to maintain facilities within operable temperature ranges. Increasing amounts of resources are spent to achieve thermal control, and tremendous potential benefit lies in the optimization of the cooling process. This paper describes a study performed on data center thermal management systems using the thermodynamic concept of exergy. Specifically, an exergy analysis has been performed on sample data centers in an attempt to identify local and overall inefficiencies within thermal management systems. The development of a model using finite volume analysis has been described, and potential applications to real-world systems have been illustrated. Preliminary results suggest that such an exergy-based analysis can be a useful tool in the design and enhancement of thermal management systems.


Author(s):  
Kamran Nazir ◽  
Naveed Durrani ◽  
Imran Akhtar ◽  
M. Saif Ullah Khalid

Due to high energy demands of data centers and the energy crisis throughout the world, efficient heat transfer in a data center is an active research area. Until now major emphasis lies upon study of air flow rate and temperature profiles for different rack configurations and tile layouts. In current work, we consider different hot aisle (HA) and cold aisle (CA) configurations to study heat transfer phenomenon inside a data center. In raised floor data centers when rows of racks are parallel to each other, in a conventional cooling system, there are equal number of hot and cold aisles for odd number of rows of racks. For even number of rows of racks, whatever configuration of hot/cold aisles is adopted, number of cold aisles is either one greater or one less than number of hot aisles i.e. two cases are possible case A: n(CA) = n(HA) + 1 and case B: n(CA) = n(HA) − 1 where n(CA), n(HA) denotes number of cold and hot aisles respectively. We perform numerical simulations for two (case1) and four (case 2) racks data center. The assumption of constant pressure below plenum reduces the problem domain to above plenum area only. In order to see which configuration provides higher heat transfer across servers, we measure heat transfer across servers on the basis of temperature differences across racks, and in order to validate them, we find mass flow rates on rack outlet. On the basis of results obtained, we conclude that for even numbered rows of rack data center, using more cold aisles than hot aisles provide higher heat transfer across servers. These results provide guidance on the design and layout of a data center.


2021 ◽  
pp. 85-91
Author(s):  
Shally Vats ◽  
Sanjay Kumar Sharma ◽  
Sunil Kumar

Proliferation of large number of cloud users steered the exponential increase in number and size of the data centers. These data centers are energy hungry and put burden for cloud service provider in terms of electricity bills. There is environmental concern too, due to large carbon foot print. A lot of work has been done on reducing the energy requirement of data centers using optimal use of CPUs. Virtualization has been used as the core technology for optimal use of computing resources using VM migration. However, networking devices also contribute significantly to the responsible for the energy dissipation. We have proposed a two level energy optimization method for the data center to reduce energy consumption by keeping SLA. VM migration has been performed for optimal use of physical machines as well as switches used to connect physical machines in data center. Results of experiments conducted in CloudSim on PlanetLab data confirm superiority of the proposed method over existing methods using only single level optimization.


Sign in / Sign up

Export Citation Format

Share Document