Ultra Mild Wear in Lubricated Tribology of an Aluminium Alloy

2007 ◽  
Vol 129 (4) ◽  
pp. 942-951 ◽  
Author(s):  
Sarmistha Das ◽  
K. Varalakshmi ◽  
V. Jayaram ◽  
S. K. Biswas

Flat faces of steel pins were slid on an eutectic aluminium silicon alloy under lubricated condition in the 1–100MPa mean contact pressure range and 0.2m∕s sliding speed. Two transition in wear rate were observed, at 10MPa and 70MPa. The wear rate in the 1–10MPa regime was found to be very small and within the measuring instrument resolution and also insensitive to contact pressure. The regime is designated ultramild wear. Lack of plastic flow, minimal fragmentation of silicon particles, and the presence of undistorted voids on the fractured and unfractured silicon particles in the subsurface suggest that the state of stress in the near surface region is elastic. Contact mechanical calculations demonstrate that at contact pressures <13.7MPa, the system is likely to shakedown to an elastic state.

2007 ◽  
Vol 280-283 ◽  
pp. 1253-1258 ◽  
Author(s):  
Zong Han Xie ◽  
Mark Hoffman ◽  
Robert J. Moon ◽  
P. R. Munroe ◽  
Yi Bing Cheng

The wear behaviour of Ca a-sialon ceramics of two distinct microstructures, fine equiaxed grains (EQ) and large elongated grains (EL), with the same chemical composition was investigated as a function of apparent contact pressure and sliding speed, using ball-on-disc type tribometers at room temperature and at 600°C. For room temperature tests, the EL microstructure exhibited a lower wear rate than EQ in the severe wear regime due to a greater resistance to large crack-induced material removal. As the apparent contact pressure decreased, mild wear appeared for both microstructures. The mechanism that dominated the material removal in EQ was grain pullout. In contrast, the controlling mechanism for EL was transgranular fracture. Therefore, EL had a lower wear rate than EQ in the mild wear regime. For wear tests at 600°C, crack-induced severe wear occurs in both EQ and EL samples for all contact pressures. EL had a slightly lower wear rate than EQ. Wear particles were generated on the wear track, but no tribofilm was observed and no oxidation products were detected. Wear models revealed that the grain aspect ratio plays a more important role than grain diameter in influencing the crack propagation during severe wear and grain pull-out during mild wear.


Author(s):  
J. E. Houghton ◽  
L. A. Mitchell ◽  
T. S. Crawford

The specific wear rate of reactor-grade graphite discs, sliding against En 58B stainless-steel cylinders, was determined for a range of theoretical contact pressures for unidirectional, constant-speed sliding in laboratory air. In many instances, wear was found to be discontinuous and associated with blistering of the graphite surface; the severity of blistering increased with increasing maximum contact pressure, but became negligible at low contact pressures, when the specific wear rate tended to a constant value—the microscopic component. At very high contact pressures, wear resulted predominantly from ploughing, i.e. instantaneous brittle fracture.


Author(s):  
R.C. Dickenson ◽  
K.R. Lawless

In thermal oxidation studies, the structure of the oxide-metal interface and the near-surface region is of great importance. A technique has been developed for constructing cross-sectional samples of oxidized aluminum alloys, which reveal these regions. The specimen preparation procedure is as follows: An ultra-sonic drill is used to cut a 3mm diameter disc from a 1.0mm thick sheet of the material. The disc is mounted on a brass block with low-melting wax, and a 1.0mm hole is drilled in the disc using a #60 drill bit. The drill is positioned so that the edge of the hole is tangent to the center of the disc (Fig. 1) . The disc is removed from the mount and cleaned with acetone to remove any traces of wax. To remove the cold-worked layer from the surface of the hole, the disc is placed in a standard sample holder for a Tenupol electropolisher so that the hole is in the center of the area to be polished.


Author(s):  
John D. Rubio

The degradation of steam generator tubing at nuclear power plants has become an important problem for the electric utilities generating nuclear power. The material used for the tubing, Inconel 600, has been found to be succeptible to intergranular attack (IGA). IGA is the selective dissolution of material along its grain boundaries. The author believes that the sensitivity of Inconel 600 to IGA can be minimized by homogenizing the near-surface region using ion implantation. The collisions between the implanted ions and the atoms in the grain boundary region would displace the atoms and thus effectively smear the grain boundary.To determine the validity of this hypothesis, an Inconel 600 sample was implanted with 100kV N2+ ions to a dose of 1x1016 ions/cm2 and electrolytically etched in a 5% Nital solution at 5V for 20 seconds. The etched sample was then examined using a JEOL JSM25S scanning electron microscope.


Author(s):  
S. Cao ◽  
A. J. Pedraza ◽  
L. F. Allard

Excimer-laser irradiation strongly modifies the near-surface region of aluminum nitride (AIN) substrates. The surface acquires a distinctive metallic appearance and the electrical resistivity of the near-surface region drastically decreases after laser irradiation. These results indicate that Al forms at the surface as a result of the decomposition of the Al (which has been confirmed by XPS). A computer model that incorporates two opposing phenomena, decomposition of the AIN that leaves a metallic Al film on the surface, and thermal evaporation of the Al, demonstrated that saturation of film thickness and, hence, of electrical resistance is reached when the rate of Al evaporation equals the rate of AIN decomposition. In an electroless copper bath, Cu is only deposited in laser-irradiated areas. This laser effect has been designated laser activation for electroless deposition. Laser activation eliminates the need of seeding for nucleating the initial layer of electroless Cu. Thus, AIN metallization can be achieved by laser patterning followed by electroless deposition.


1997 ◽  
Vol 40 (2) ◽  
pp. 400-404 ◽  
Author(s):  
Virginia A. Hinton ◽  
Winston M. C. Arokiasamy

It has been hypothesized that typical speech movements do not involve large muscular forces and that normal speakers use less than 20% of the maximum orofacial muscle contractile forces that are available (e.g., Amerman, 1993; Barlow & Abbs, 1984; Barlow & Netsell, 1986; DePaul & Brooks, 1993). However, no direct evidence for this hypothesis has been provided. This study investigated the percentage of maximum interlabial contact pressures (force per unit area) typically used during speech production. The primary conclusion of this study is that normal speakers typically use less than 20% of the available interlabial contact pressure, whether or not the jaw contributes to bilabial closure. Production of the phone [p] at conversational rate and intensity generated an average of 10.56% of maximum available interlabial pressure (MILP) when jaw movement was not restricted and 14.62% when jaw movement was eliminated.


2013 ◽  
Vol 423-426 ◽  
pp. 2035-2039
Author(s):  
Long Cang Huang ◽  
Yin Ping Cao ◽  
Yang Yu ◽  
Yi Hua Dou

In the process of oil and gas well production, tubing connection stand the axial alternating load during open well, shut well and fluid flow. In order to know premium connection seal ability under the loading, two types of P110 88.9mmx6.45mm premium tubing connections which called A connection and B connection are performed with finite element analysis, in which contact pressures and their the regularities distribution on sealing surface are analyzed. The results show that with the increasing of cycle number, the maximum contact pressures on sealing surface of both A connection and B connection are decreased. The decreasing of the maximum contact pressures on B connection is greater than those on A connection. With the increasing of cycle number of axial alternating compression load, the maximum contact pressure on sealing surface of A connection is decreased, and the maximum contact pressure on sealing surface of B connection remains constant. Compared the result, it shows that the seal ability of A connection is better than B connection under axial alternating tension load, while the seal ability of B connection is better than type A connection under axial alternating compression load.


1992 ◽  
Vol 105-110 ◽  
pp. 1383-1386 ◽  
Author(s):  
Hugh E. Evans ◽  
D.L. Smith ◽  
P.C. Rice-Evans ◽  
G.A. Gledhill ◽  
A.M. Moore

2014 ◽  
Vol 5 (1) ◽  
pp. 30-44 ◽  
Author(s):  
Qing-rui Meng

Purpose – The purpose of this paper is to reveal the temperature rise characteristics of the disc and pads under different load types. Design/methodology/approach – Evolutions of the disc and pads temperature under a stable, gradual changing and sine-wave contact pressures widely used at present are analyzed numerically by using ANSYS software. Findings – The results show that during the loading process, the temperature increases most rapidly under a stable contact pressure, most slowly under a gradual changing contact pressure; the disc temperature rise curves expose saw-shaped character, the closer it is to the friction surface, the more serious the fluctuations will be, the pads temperature rise curves are rather smooth; temperature gradient in the axial direction is higher than that in the other two directions under all of the three types of contact pressure and shows a sine-wave variation under a sine-wave contact pressure. Originality/value – It indicates that a gradual changing contact pressure should be adopted preferentially in practical application. The simulation results of this work provide theoretical basis for load simulation.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 693
Author(s):  
Christian Ludt ◽  
Elena Ovchinnikova ◽  
Anton Kulikov ◽  
Dmitri Novikov ◽  
Sibylle Gemming ◽  
...  

This work focuses on the validation of a possible connection of the known Ruddlesden-Popper (RP) phases and the novel concept of the migration-induced field-stabilized polar (MFP) phase. To study this subject, model structures of RP phases in bulk strontium titanate are analyzed by means of density functional theory (DFT). The obtained geometries are compared to experimental MFP data. Good agreement can be found concerning atomic displacements in the pm range and lattice strain inferred by the RP phases. Looking at the energy point of view, the defect structures are on the convex hull of the Gibb’s free energy. Although the dynamics to form the discussed defect models are not addressed in detail, the interplay and stability of the described defect model will add to the possible structure scenarios within the near-surface region of strontium titanate. As a result, it can be suggested that RP phases generally favor the MFP formation.


Sign in / Sign up

Export Citation Format

Share Document