The Effects of Material Properties on Heat Dissipation in High Power Electronics

1998 ◽  
Vol 120 (3) ◽  
pp. 280-289 ◽  
Author(s):  
T. J. Lu ◽  
A. G. Evans ◽  
J. W. Hutchinson

The role of the substrate in determining heat dissipation in high power electronics is calculated, subject to convective cooling in the small Biot number regime. Analytical models that exploit the large aspect ratio of the substrate to justify approximations are shown to predict the behavior with good accuracy over a wide range of configurations. The solutions distinguish heat spreading effects’ that enable high chip-level power densities from insulation effects that arise at large chip densities. In the former, the attributes of high thermal conductivity are apparent, especially when the substrate dimensions are optimized. Additional benefits that derive from a thin layer of a high thermal conductivity material (such as diamond) are demonstrated. In the insulating region, which arises at high overall power densities, the substrate thermal conductivity has essentially no effect on the heat dissipation. Similarly, for compact multichip module designs, with chips placed on both sides of the substrate, heat dissipation is insensitive to the choice of the substrate material, unless advanced cooling mechanisms are used to remove heat around the module perimeter.

2019 ◽  
Vol 2019 (1) ◽  
pp. 000131-000138
Author(s):  
Nagaraja Shashidhar ◽  
Abhijit Rao

Abstract Alumina and aluminum nitride substrates are routinely used in micro-electronic packaging where large quantity of heat needs to be dissipated, such as in LED packaging, high power electronics and laser packaging. Heat management in high power electronics or LED's is crucial for their lifespan and reliability. The ever-increasing need for higher power keeps challenging the packaging engineers to become more sophisticated in their packaging. With the availability of a 40 μm thick, high thermal conductivity ribbon alumina from Corning, the options available for packaging engineers has widened. This product has very high dielectric breakdown (~10kV at 40 μm thick), high thermal conductivity (>36 W/mK) and is rugged enough to be handled (with components attached) during packaging. These characteristics make ribbon alumina a cost-effective alternative to incumbent materials such as thick aluminum nitride, for use in high power microelectronics packaging. In this paper, high power LED and IGBT modules are modeled using commercially available code from ANSYS®. A geometry representative of typical LED packaging and IGBT packaging is constructed with Ansys Design Modeler platform and the allied meshing is done employing in-built Meshing tool in ANSYS Workbench®. We show that packaging with ~40 μm ribbon alumina delivers performance on par with or better than packaging with thicker aluminum nitride substrates.


2019 ◽  
Vol 1309 ◽  
pp. 012016
Author(s):  
A D Kurilov ◽  
V V Belyaev ◽  
K D Nessemon ◽  
E D Besprozvannyi ◽  
A O Osin ◽  
...  

2019 ◽  
Author(s):  
Prashun Gorai ◽  
Robert McKinney ◽  
Nancy Haegel ◽  
Andriy Zakutayev ◽  
Vladan Stevanovic

Power electronics (PE) are used to control and convert electrical energy in a wide range of applications from consumer products to large-scale industrial equipment. While Si-based power devices account for the vast majority of the market, wide band gap semiconductors such as SiC, GaN, and Ga2O3 are starting to gain ground. However, these emerging materials face challenges due to either non-negligible defect densities, or high synthesis and processing costs, or poor thermal properties. Here, we report on a broad computational survey aimed to identify promising materials for future power electronic devices beyond SiC, GaN, and Ga2O3. We consider 863 oxides, sulfides, nitrides, carbides, silicides, and borides that are reported in the crystallographic database and exhibit finite calculated band gaps. We utilize ab initio methods in conjunction with models for intrinsic carrier mobility, and critical breakdown field to compute the widely used Baliga figure of merit. We also compute the lattice thermal conductivity as a screening parameter. In addition to correctly identifying known PE materials, our survey has revealed a number of promising candidates exhibiting the desirable combination of high figure of merit and high lattice thermal conductivity, which we propose for further experimental investigations.


2018 ◽  
Vol 52 (2) ◽  
pp. 025103 ◽  
Author(s):  
J Oliva ◽  
A I Mtz-Enriquez ◽  
A I Oliva ◽  
R Ochoa-Valiente ◽  
C R Garcia ◽  
...  

2017 ◽  
Vol 2017 (1) ◽  
pp. 000151-000156 ◽  
Author(s):  
Xin Zhao ◽  
K. Jagannadham ◽  
Wuttichai Reainthippayasakul ◽  
Michael T. Lanagan ◽  
Douglas C. Hopkins

Abstract Available substrate materials for power module applications has been investigated for a long time. Though Direct Bonded Copper (DBC) substrates, nowadays, have been widely applied in power electronics applications, especially power modules, due to its superior performance in mechanical ruggedness, thermal conductivity, and isolation capability. Its cost and complicated requirements during fabrication processes are always concerns in industries. At the same time, flexible electronics has become a rapidly expanding area with commercial applications including displays, medical, automotive, sensors arrays, wearable electronics, etc. This paper will initiate an investigation on a dielectric material that has potential in high power wearable electronics applications. A recently developed ultra-thin Epoxy-Resin Based Dielectric (ERBD) substrate material which is suitable for power electronic applications, is introduced. The ERBD can be fabricated with thickness as low as 80μm, with more than 5kV DC isolation capability. Its thermal conductivity is 8W/mK, higher than similar product currently available in the market. ERBD is also able to be bonded with Cu plates on both sides. In this paper, the properties of ERBD are investigated. Scanning Electron Microscope (SEM) is applied to analyze the microstructure of ERBD, and its bonding interface with Cu plates. 3-omega and Transient Thermal Reflectance methods are employed to precisely measure the thermal conductivity. Dielectric constant and loss are measured at different frequency. Simulations are applied to correct the error from the fringing effect during the measurement. The leakage current of ERBD is also measured under different voltage and temperature with DC and AC condition. Reliability tests are conducted to examine the electrical isolation and shearing strength of ERBD. The suitability of ERBD for potential flexible power electronics application is discussed based on the results from investigation of properties of the dielectric.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai-Han Su ◽  
Cherng-Yuh Su ◽  
Cheng-Ta Cho ◽  
Chung-Hsuan Lin ◽  
Guan-Fu Jhou ◽  
...  

Abstract The issue of electronic heat dissipation has received much attention in recent times and has become one of the key factors in electronic components such as circuit boards. Therefore, designing of materials with good thermal conductivity is vital. In this work, a thermally conductive SBP/PU composite was prepared wherein the spherical h-BN@PMMA (SBP) composite powders were dispersed in the polyurethane (PU) matrix. The thermal conductivity of SBP was found to be significantly higher than that of the pure h-BN/PU composite at the same h-BN filler loading. The SBP/PU composite can reach a high thermal conductivity of 7.3 Wm−1 K−1 which is twice as high as that of pure h-BN/PU composite without surface treatment in the same condition. This enhancement in the property can be attributed to the uniform dispersion of SBP in the PU polymer matrix that leads to a three-dimensional continuous heat conduction thereby improving the heat diffusion of the entire composite. Hence, we provide a valuable method for preparing a 3-dimensional heat flow path in polyurethane composite, leading to a high thermal conductivity with a small amount of filler.


2020 ◽  
Vol 4 (3) ◽  
pp. 116
Author(s):  
Maryam Khalaj ◽  
Sanaz Zarabi Golkhatmi ◽  
Sayed Ali Ahmad Alem ◽  
Kahila Baghchesaraee ◽  
Mahdi Hasanzadeh Azar ◽  
...  

Ever-increasing significance of composite materials with high thermal conductivity, low thermal expansion coefficient and high optical bandgap over the last decade, have proved their indispensable roles in a wide range of applications. Hexagonal boron nitride (h-BN), a layered material having a high thermal conductivity along the planes and the band gap of 5.9 eV, has always been a promising candidate to provide superior heat transfer with minimal phonon scattering through the system. Hence, extensive researches have been devoted to improving the thermal conductivity of different matrices by using h-BN fillers. Apart from that, lubrication property of h-BN has also been extensively researched, demonstrating the effectivity of this layered structure in reduction of friction coefficient, increasing wear resistance and cost-effectivity of the process. Herein, an in-depth discussion of thermal and tribological properties of the reinforced composite by h-BN will be provided, focusing on the recent progress and future trends.


Sign in / Sign up

Export Citation Format

Share Document