Minimization of Heat Sink Mass Using CFD and Mathematical Optimization

1999 ◽  
Vol 121 (3) ◽  
pp. 143-147 ◽  
Author(s):  
K. J. Craig ◽  
D. J. de Kock ◽  
P. Gauche´

This paper describes the use of CFD and mathematical optimization to minimise heat sink mass given a maximum allowable heat sink temperature, a constant cooling fan power and heat source. Heat sink designers have to consider a number of conflicting parameters. Heat transfer is influenced by, amongst others, heat sink properties (such as surface area), airflow bypass and the location of heat sources, whilst size and/or mass of the heat sink needs to be minimized. This multiparameter problem lends itself naturally to optimization techniques. In this study a commercial CFD code, STAR-CD, is linked to the DYNAMIC-Q method of Snyman. Five design variables are considered for three heat source cases. Optimal designs are obtained within six design iterations. The paper illustrates how mathematical optimization can be used to design compact heat sinks for different types of electronic enclosures.

2004 ◽  
Vol 126 (3) ◽  
pp. 333-341 ◽  
Author(s):  
D. J. de Kock ◽  
J. A. Visser

Heat sink designers have to balance a number of conflicting parameters to maximize the performance of heat sinks. This multi-parameter problem lends itself naturally to mathematical optimization techniques. The paper illustrates how mathematical optimization techniques combined with a semi-empirical thermal simulation program can be used to construct a trade-off curve (Pareto-optimal set) between the heat sink mass and thermal resistance for a given heat sink configuration. This trade-off curve can be used by the engineer to decide on the optimal heat sink design that is the best compromise between heat sink mass and thermal resistance for the specific application under consideration.


2011 ◽  
Vol 301-303 ◽  
pp. 165-169
Author(s):  
Da Yong Gao ◽  
Jian Xin Zhang ◽  
Ping Juan Niu

The spreading resistance is a very important parameter in the applications of heat sink. The design of electronic devices will fail without considering the influence of the spreading resistance. In this paper, a simple thermal model was simulated by Computational Fluid Dynamics software. Some factors, which have great influence on the spreading resistance, have been analyzed. The spreading resistance decreases significantly with the increasing of the area ratio between the heat source and the base-plate. While the ratio being 1, the spreading resistance reaches the mix value. The greater the thermal conductivity of heat sink, the lower the spreading resistance. With the increasing of the thickness of base-plate, the spreading resistance reduces. However, if the thickness exceeds the critical value, the spreading resistance will increase. And the spreading resistance reaches the mix value while the centers of heat source and the base-plate are overlapped.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2385
Author(s):  
Pedro Arnau ◽  
Naeria Navarro ◽  
Javier Soraluce ◽  
Jose Martínez-Iglesias ◽  
Jorge Illas ◽  
...  

Cool steam is an innovative distillation technology based on low-temperature thermal distillation (LTTD), which allows obtaining fresh water from non-safe water sources with substantially low energy consumption. LTTD consists of distilling at low temperatures by lowering the working pressure and making the most of low-grade heat sources (either natural or artificial) to evaporate water and then condensate it at a cooler heat sink. To perform the process, an external heat source is needed that provides the latent heat of evaporation and a temperature gradient to maintain the distillation cycle. Depending on the available temperature gradient, several stages can be implemented, leading to a multi-stage device. The cool steam device can thus be single or multi-stage, being raw water fed to every stage from the top and evaporated in contact with the warmer surface within the said stage. Acting as a heat carrier, the water vapor travels to the cooler surface and condensates in contact with it. The latent heat of condensation is then conducted through the conductive wall to the next stage. Net heat flux is then established from the heat source until the heat sink, allowing distilling water inside every parallel stage.


Author(s):  
Y. C. Wu ◽  
H. T. Chen ◽  
C. C. Lin ◽  
Y. H. Hung

An effective thermal analyzer for exploring the thermal performance of 3-D heat spreader having discrete heat sources integrated with heat sink has been successfully developed in the study. The thermal performances such as local temperature distributions and isotherms on heat spreader surfaces; and overall resistance of heat spreader/sink assembly are investigated. Besides, a series of parametric studies have been performed. The parameters and conditions explored include the size and heat dissipation rate of heat sources, size and material of heat spreaders and heat sinks, type of convection in heat sink, and contact conditions between heat spreader and heat sink. The superiority of the developed thermal analyzer through two sample cases having multi-discrete heat sources has finally been demonstrated.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Wataru Nakayama

This paper reports the design study performed on a heat conduction panel having several heat sources at separate locations and a heat sink on one of the panel corners. The panel is given a thickness distribution so as to provide spatially varying heat conduction paths from the heat sources to the heat sink. The objective of thickness distribution design is to reduce the variation among heat source temperatures and the maximum heat source temperature simultaneously. The genetic algorithm is used to search for an optimum thickness distribution. The problem is a generic representation of the situations that are becoming common in a compact electronic equipment.


2013 ◽  
Vol 391 ◽  
pp. 213-216
Author(s):  
Yan Feng Liu ◽  
Xiang Hong Li ◽  
Shi Ping Li

This article conducted numerical simulation and experimental study of curved channel laminar flow and heat transfer characteristics with different Reynolds number and different heat fluxes, it also showed the comparison with straight rectangular channel of a same heat transfer area. The results showed that: cooling effect of curved channel heat sink is better than that of straight rectangular channel heat sink, temperature distribution appears to be more uniform as well; The experimental results showed that the curved channel heat sink can effectively satisfy the needs of the CPU cooling.


Author(s):  
Afzal Husain ◽  
Kwang-Yong Kim

A liquid flow microchannel heat sink has been studied with the help of three-dimensional numerical analysis for mixed (electroosmotic and pressure-driven) flow. The optimization of the microchannel heat sink has been performed with the help of surrogate method coupled with multi-objective evolutionary algorithms. The effects of ionic concentration represented by the zeta potential and Debye thickness are studied at various levels of externally applied electric potential. Temperature dependent coolant properties are considered to take into account the micro-scale effects for accurately predicting the thermal performance of the microchannel heat sink. Higher value of zeta potential leads to higher flow-rate and lower thermal resistance which consequently reduced the temperature of the microprocessor chip and load of micro-pump used to supply the coolant to the microchannels. Two design variables are selected related to the microchannel width, depth and fin width and design space is explored through four-level full factorial design. The channel width-to-depth ratio is found to be higher Pareto-sensitive (sensitivity along the Pareto-optimal front) than the other design variable. The trade-off between objective functions and Pareto-sensitivity of the design variables can be utilized to economically design the microchannel heat sinks. In view of the limiting pumping power available at the micro-level the application of the electroosmosis along with the commonly used pumping source can greatly enhance the performance of the microchannel heat sink.


Author(s):  
K. Yazawa ◽  
T. Yoshida ◽  
S. Nakagawa ◽  
M. Ishizuka

Thermal performance in conjunction with fluid dynamic characterization and analysis on low profile heat sink was carried out. Regardless to the increasing power of VLSI chip, recent advanced packaging for compact and slim enclosure for consumer electronics requires a low profile heat sink with a small space available for cooling fan that limits the power of pumping airflow. Therefore, highly integrated fins for low profile heat sink become important to be characterized and modeled. Such low profile and high fin density heat sink has non-ideal shape for shrouding that has not been modeled yet. Proposed semi-bypass model particularly for the practical application of such heat sink is discussed with experimental results and numerical analysis. The apparatus is designed to measure both thermal and fluid dynamic characteristics at the same time. The results are compared based on tested range and found in good agreement at near optimum design. With utilizing this analytic model, cooling performance is optimized with fin number for given pumping power. To understand the shroud impact, these heat sinks are compared with similar foot print and conventional open fin heat sinks which have been already characterized. In addition, semi-bypass impact is also compared with ideally full shroud case in the model. Interestingly, this semi-bypass design is found slightly better than full shroud heat sinks in terms of the performance for same given pumping power.


Author(s):  
D. J. de Kock ◽  
J. A. Visser

In modern electronic components power densities are being increased continuously while the size and weight decrease. The effective dissipating of the heat produced by these components has now become a major design problem. Ordinary heat sinks often used to dissipate this heat, can in many instances no longer be used. Heat sinks therefore need to be designed and optimized for specific applications. The design of these heat sinks requires a difficult trade-off between conflicting parameters, e.g. mass or material cost, maximum temperature and pressure drop. Since these parameters influence one another, optimum designs require the use of mathematical optimization techniques. In the case of heat sinks, the thermal engineer would typically like to optimize the design simultaneously for three design parameters. The parameters are maximum heat sink temperature, mass and pressure drop. In the formulation of such an optimization problem, where more than one design criterion is important, the engineer currently has to assign the relative importance of each design criteria before starting the optimization. A better approach is to perform a range of optimization problems where the relative importance of the design criteria is varied systematically to obtain a trade-off surface of optimum heat sinks. This surface can then be used to investigate the influence of the different design criteria on each other and to select the optimum heat sink for a specific application. In this study such a trade-off surface is created for an extruded heat sink exposed to forced convection. The constructing of this surface is obtained by combining a semi-empirical simulation program, QFin 3.0 with the DYNAMIC-Q optimization method.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 122 ◽  
Author(s):  
Idris Al Siyabi ◽  
Sourav Khanna ◽  
Senthilarasu Sundaram ◽  
Tapas Mallick

Concentrating photovoltaic has a major challenge due to the high temperature raised during the process which reduces the efficiency of the solar cell. A multi-layered microchannel heat sink technique is considered more efficient in terms of heat removal and pumping power among many other cooling techniques. Thus, in the current work, multi-layered microchannel heat sink is used for concentrating photovoltaic cooling. The thermal behavior of the system is experimentally and numerically investigated. The results show that in extreme heating load of 30 W/cm2 with heat transfer fluid flow rate of 30 mL/min, increasing the number of layers from one to four reduces the heat source temperature from 88.55 to 73.57 °C. In addition, the single layered MLM heat sink suffers from the highest non-uniformity in the heat source temperature compared to the heat sinks with the higher number of layers. Additionally, the results show that increasing the number of layers from one to four reduces the pressure drop from 162.79 to 32.75 Pa.


Sign in / Sign up

Export Citation Format

Share Document