Postyield Cyclic Buckling Criteria for Aluminum Shear Panels

2008 ◽  
Vol 75 (2) ◽  
Author(s):  
Sachin Jain ◽  
Durgesh C. Rai ◽  
Dipti R. Sahoo

Aluminum shear panels can dissipate significant amount of energy through hysteresis provided strength deterioration due to buckling is avoided. A detailed experimental study of the inelastic behavior of the full-scale models of shear panels of 6063-O and 1100-O alloys of aluminum is conducted under slow cyclic loading of increasing displacement levels. The geometric parameters that determine buckling of the shear panels, such as web depth-to-thickness ratio, aspect ratio of panels, and number of panels, were varied among the specimens. Test results were used to predict the onset of buckling with proportionality factor f in Gerard’s formulation of inelastic buckling. Moreover, a logarithmic relationship between buckling stress and slenderness ratio of the panel was observed to predict experimental data closely. These relations can be further used to determine the geometry of shear panels, which will limit the inelastic web buckling at design shear strains.

2017 ◽  
Vol 25 (2) ◽  
pp. 161-172 ◽  
Author(s):  
Kazuya Mitsui ◽  
Atsushi Sato

Abstract In Japan, built-up member composed with light gauge is used for studs of shear wall. Flexural buckling stress of built-up compression member is evaluated by effective slenderness ratio. The effective slenderness ratio of light gauge built-up compression member is proposed for heavy sections; however, it is not verified that it can be adopted in light gauge. In this paper, full scale testing of light gauge built-up members are conducted. From the test results, it is shown that current Standard overestimates the buckling strength. Based on energy equilibrium theory, modified effective slenderness ratio for light gauge built-up member is derived. The validity of the modified effective slenderness ratio is shown with test results.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Jiaxing Ma ◽  
Tao Wang ◽  
Yinhui Wang ◽  
Kikuo Ikarashi

Numerical analyses and theoretic analyses are presented to study the elastic buckling of H-section beam web under combined bending and shear force. Results show that the buckling stress of a single web with clamped edges gives a good agreement with the buckling stress of an H-section beam web when the local buckling of the beam is dominated by the web buckling. Based on theoretic analyses, a parametric study is conducted to simplify the calculation of buckling coefficients. The parameters involved are clarified first, and the improved equations for the buckling coefficient and buckling stress are suggested. By applying the proposed method, the web buckling slenderness ratio is defined. It is verified that the web buckling slenderness ratio has a strong correlation with the normalized ultimate strength of H-section beams when the buckling of the beams is dominated by web buckling. Finally, a design equation is proposed for the ultimate strength of H-section beams.


2010 ◽  
Vol 168-170 ◽  
pp. 564-569
Author(s):  
Guang Lin Yuan ◽  
Jing Wei Zhang ◽  
Jian Wen Chen ◽  
Dan Yu Zhu

This paper makes an experimental study of mechanical properties of high-strength pumpcrete under fire, and the effects of heating rate, heating temperature and cooling mode on the residual compressive strength(RCS) of high-strength pumpcrete are investigated. The results show that under air cooling, the strength deterioration speed of high-strength concrete after high temperature increases with the increase of concrete strength grade. Also, the higher heating temperature is, the lower residual compressive strength value is. At the same heating rate (10°C/min), the residual compressive strength of C45 concrete after water cooling is a little higher than that after air cooling; but the test results are just the opposite for C55 and C65 concrete. The strength deterioration speed of high-strength concrete after high temperature increases with the increase of heating rate, but not in proportion. And when the heating temperature rises up between 200°C and 500°C, heating rate has the most remarkable effect on the residual compressive strength of concrete. These test results provide scientific proofs for further evaluation and analysis of mechanical properties of reinforced-concrete after exposure to high temperatures.


2021 ◽  
Vol 153 (A2) ◽  
Author(s):  
R P Dallinga ◽  
R H M Huijsmans

Historically “scale effects” in the interpretation of tests with scale models in waves using Froude’s Law of Similitude are mostly associated with viscous effects. Nowadays, with a much more complete modelling of reality and a focus on higher order non-linear phenomena, scaling of model test results implies a wider range of assumptions than the validity of Froude’s Law. Our contribution to the conference is a visionary review of contemporary and future problems in the interpretation of these tests. In this context we will discuss the developments in test techniques, including the development of a new Two-Phase Laboratory facilitating seakeeping and sloshing tests at reduced air pressure.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Yong-feng Tang ◽  
Han-cheng Chen ◽  
Zhen-wei Ye ◽  
Ting-jin Liu ◽  
Yu-bing Yang

The transverse effective rigidity ratio is a key parameter when the uniform rigidity ring model is adopted to design or numerically analyse segmental lining structures commonly used on a shield-driven tunnel. Traditionally, the transverse effective rigidity ratio η is treated as a constant, which can be evaluated through theoretical analysis and model tests. In this study, scale models were designed and tested to investigate the variation of the transverse effective rigidity ratio in the segmental linings’ flattening deformation process. The test results suggested that in the elastic stage, the transverse effective rigidity ratio fluctuated between 0.667 and 0.734 for the stagger-jointed rings and fluctuated between 0.503 and 0.642 for the straight-jointed rings. When segmental linings were squashed and started to crack at the circumferential joints, the transverse effective rigidity ratio decreases sharply. Then, a regression equation was obtained to fit the variation trend of η with the increase of horizontal convergence to the outer-diameter ratio (ΔD/Dout). Finally, in a case study, the regression equation was adapted to determine the value of η of an operated shield tunnel which was once surcharged accidentally and deformed severely so as to numerically predict the prospective deformation induced by the upcoming adjacent excavation. Numerical results indicated that as the value of η decreases, the horizontal convergences of shield tunnel induced by adjacent excavation increase significantly and even more than doubled in the case study. Comparatively, through taking account of the operating tunnels’ exiting transverse deformation, the predicted deformation tends to be unfavourable.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6860
Author(s):  
Jun Wang ◽  
Yuxin Duan ◽  
Yifan Wang ◽  
Xinran Wang ◽  
Qi Liu

To investigate the applicability of the methods for calculating the bearing capacity of high-strength steel-reinforced concrete (SRC) composite columns according to specifications and the effect of confinement of stirrups and steel on the bearing capacity of SRC columns. The axial compression tests were conducted on 10 high-strength SRC columns and 4 ordinary SRC columns. The influences of the steel strength grade, the steel ratio, the types of stirrups and slenderness ratio on the bearing capacity of such members were examined. The analysis results indicate that using high-strength steel and improving the steel ratio can significantly enhance the bearing capacity of the SRC columns. When the slenderness ratio increases dramatically, the bearing capacity of the SRC columns plummets. As the confinement effect of the stirrups on the concrete improves, the utilization ratio of the high-strength steel in the SRC columns increases. Furthermore, the results calculated by AISC360-19(U.S.), EN1994-1-1-2004 (Europe), and JGJ138-2016(China) are too conservative compared with test results. Finally, a modified formula for calculating the bearing capacity of the SRC columns is proposed based on the confinement effect of the stirrups and steel on concrete. The results calculated by the modified formula and the finite element modeling results based on the confinement effect agree well with the test results.


1983 ◽  
Vol 105 (1) ◽  
pp. 42-47 ◽  
Author(s):  
G. R. Johnson ◽  
J. M. Hoegfeldt ◽  
U. S. Lindholm ◽  
A. Nagy

This paper presents torsional test results for six ductile metals subjected to large shear strains and high strain rates. Included are OFHC copper, Cartridge brass, Nickel 200, Armco IF iron, Carpenter electrical iron, and 1006 steel. Torsional shear strains as high as 700 percent are achieved and strain rates vary from quasi-static to over 300 s−1. At the lower strain rates all of the materials exhibit positive strain hardening and strain rate hardening under essentially isothermal conditions. At the higher strain rates there is significant adiabatic thermal softening and strong evidence for shear instabilities and localizations. Constitutive relationships are derived from the test data and finite element computations of the tests are performed.


2012 ◽  
Vol 204-208 ◽  
pp. 502-507 ◽  
Author(s):  
Quan Min Liu ◽  
Xun Zhang ◽  
Zhi Jun Zhang ◽  
Xiao Zhen Li

On the basis of the measured ground borne vibration of some inter-city express railway viaduct, test results analysis shows that: the test environmental vibration is under the limit set by standard of environmental vibration in urban area; whether transverse or vertical vibration, a rapid attenuation of the peak acceleration with the distance to the up-track center is observed, however the vibration at 7.5m appears to be amplified; the ground vibration with the distance conforms to a logarithmic relationship; the horizontal ground vibration at 7.5m caused by the elevated rail transit is larger 3.6cm/s2 than the vertical vibration; low-frequency vibration transfers farther than high frequency vibration; the eccentric effect of two-track viaduct is obvious.


2014 ◽  
Vol 584-586 ◽  
pp. 1192-1196
Author(s):  
Xiao Wen Liu ◽  
Xiao Yan Chen

Through lots of triaxial and a single-line wetting path experiments for slaking deformation of the remolded laterite , behaviors of stress-strain and volumetric strain-axial strain are studied at different level values of wetting stress.The test results indicate that the modulus of deformation and the strength of samples are reduced by wetting, that the value of wetting deformation is relation to the stress state and that the logarithmic relationship between wetting axial strain of the type of laterite and wetting stress levels meets . The test results obtained have an important reference value for actual projects in Jiangxi laterite area.


2016 ◽  
Vol 853 ◽  
pp. 317-321
Author(s):  
Mohammad Anwar-Us-Saadat ◽  
Mahmud Ashraf ◽  
Shameem Ahmed

Stainless steel is now widely used in construction as structural members in recognition to its unique beneficial properties such as corrosion resistance, higher strength and ductility, andnegligible maintenance cost. Recent research on stainless steel has seen development of rational design rules to predict cross-sectional resistances but still lacks in appropriate knowledge at the member level. The current paper investigates the lateral-torsional buckling (LTB) behaviour of welded stainless steel I sections. Available test results were used to develop and validate nonlinear finite element (FE) models. Limited experimental evidences were supplemented by a large number of reliable numerical results covering wider range of member slenderness ratio. All test and numerical results were used to investigate the performance of Eurocode EN-1993-1-4 and Australian code AS/NZS 4673 in predicting member resistances against lateral-torsional buckling.


Sign in / Sign up

Export Citation Format

Share Document