System Dynamics Modeling of Porous Media

1997 ◽  
Vol 119 (2) ◽  
pp. 251-259 ◽  
Author(s):  
E. P. Fahrenthold ◽  
M. Venkataraman

A wide range of engineering problems involve porous media modeling. General porous media models are highly nonlinear, geometrically complex, and must account for energy transfer between fluid and solid constituents normally modeled in distinct Lagrangian and Eulerian reference frames. Combining finite element discretization techniques with bond graph methods greatly simplifies the model formulation process, as compared to alternative schemes based on weighted residual solutions of the governing partial differential equations. The result generalizes existing numerical models of porous media and current network thermodynamics/bond graph theory.

1994 ◽  
Vol 116 (2) ◽  
pp. 178-192 ◽  
Author(s):  
E. P. Fahrenthold ◽  
J. D. Wargo

The limitations of existing continuum bond graph modeling techniques have effectively precluded their use in large order problems, where nonrepetitive graph structures and causal patterns are normally present. As a result, despite extensive publication of bond graph models for continuous systems simulations, bond graph methods have not offered a viable alternative to finite element analysis for the vast majority of practical problems. However, a new modeling approach combining Lagrangian (mass fixed) bond graphs with a selected finite element discretization scheme allows for direct simulation of a wide range of large order solid continuum dynamics problems. With appropriate modifications, including the use of Eulerian (space fixed) bond graphs, the method may be extended to include fluid dynamics modeling.


2021 ◽  
Vol 9 (1) ◽  
pp. 63
Author(s):  
Manuel Bueno Aguado ◽  
Félix Escolano Sánchez ◽  
Eugenio Sanz Pérez

Model uncertainty is present in many engineering problems but particularly in those involving geotechnical behavior of pile foundation. A wide range of soil conditions together with simplified numerical models makes it a constant necessity to review the accuracy of the predictions. In this paper, the outputs of some seventy (70) pile axially-loaded tests have been reviewed with a classic numerical model to assess pile deformation. Probabilistic approach has been used to quantify uncertainties coming from soil tests, statistic uncertainty and also from the model itself. In this way, a critical review of the prediction method and a way to quantify its uncertainty is presented. The method is intended to be used in a wide range of engineering problems.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 458
Author(s):  
Drew C. Baird ◽  
Benjamin Abban ◽  
S. Michael Scurlock ◽  
Steven B. Abt ◽  
Christopher I. Thornton

While there are a wide range of design recommendations for using rock vanes and bendway weirs as streambank protection measures, no comprehensive, standard approach is currently available for design engineers to evaluate their hydraulic performance before construction. This study investigates using 2D numerical modeling as an option for predicting the hydraulic performance of rock vane and bendway weir structure designs for streambank protection. We used the Sedimentation and River Hydraulics (SRH)-2D depth-averaged numerical model to simulate flows around rock vane and bendway weir installations that were previously examined as part of a physical model study and that had water surface elevation and velocity observations. Overall, SRH-2D predicted the same general flow patterns as the physical model, but over- and underpredicted the flow velocity in some areas. These over- and underpredictions could be primarily attributed to the assumption of negligible vertical velocities. Nonetheless, the point differences between the predicted and observed velocities generally ranged from 15 to 25%, with some exceptions. The results showed that 2D numerical models could provide adequate insight into the hydraulic performance of rock vanes and bendway weirs. Accordingly, design guidance and implications of the study results are presented for design engineers.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 920
Author(s):  
Chukwuma Ogbonnaya ◽  
Chamil Abeykoon ◽  
Adel Nasser ◽  
Ali Turan

A system of transcendental equations (SoTE) is a set of simultaneous equations containing at least a transcendental function. Solutions involving transcendental equations are often problematic, particularly in the form of a system of equations. This challenge has limited the number of equations, with inter-related multi-functions and multi-variables, often included in the mathematical modelling of physical systems during problem formulation. Here, we presented detailed steps for using a code-based modelling approach for solving SoTEs that may be encountered in science and engineering problems. A SoTE comprising six functions, including Sine-Gordon wave functions, was used to illustrate the steps. Parametric studies were performed to visualize how a change in the variables affected the superposition of the waves as the independent variable varies from x1 = 1:0.0005:100 to x1 = 1:5:100. The application of the proposed approach in modelling and simulation of photovoltaic and thermophotovoltaic systems were also highlighted. Overall, solutions to SoTEs present new opportunities for including more functions and variables in numerical models of systems, which will ultimately lead to a more robust representation of physical systems.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 79
Author(s):  
Minghan Luo ◽  
Wenjie Xu ◽  
Xiaorong Kang ◽  
Keqiang Ding ◽  
Taeseop Jeong

The ultraviolet photochemical degradation process is widely recognized as a low-cost, environmentally friendly, and sustainable technology for water treatment. This study integrated computational fluid dynamics (CFD) and a photoreactive kinetic model to investigate the effects of flow characteristics on the contaminant degradation performance of a rotating annular photoreactor with a vacuum-UV (VUV)/UV process performed in continuous flow mode. The results demonstrated that the introduced fluid remained in intensive rotational movement inside the reactor for a wide range of inflow rates, and the rotational movement was enhanced with increasing influent speed within the studied velocity range. The CFD modeling results were consistent with the experimental abatement of methylene blue (MB), although the model slightly overestimated MB degradation because it did not fully account for the consumption of OH radicals from byproducts generated in the MB decomposition processes. The OH radical generation and contaminant degradation efficiency of the VUV/UV process showed strong correlation with the mixing level in a photoreactor, which confirmed the promising potential of the developed rotating annular VUV reactor in water treatment.


Author(s):  
Michael D. T. McDonnell ◽  
Daniel Arnaldo ◽  
Etienne Pelletier ◽  
James A. Grant-Jacob ◽  
Matthew Praeger ◽  
...  

AbstractInteractions between light and matter during short-pulse laser materials processing are highly nonlinear, and hence acutely sensitive to laser parameters such as the pulse energy, repetition rate, and number of pulses used. Due to this complexity, simulation approaches based on calculation of the underlying physical principles can often only provide a qualitative understanding of the inter-relationships between these parameters. An alternative approach such as parameter optimisation, often requires a systematic and hence time-consuming experimental exploration over the available parameter space. Here, we apply neural networks for parameter optimisation and for predictive visualisation of expected outcomes in laser surface texturing with blind vias for tribology control applications. Critically, this method greatly reduces the amount of experimental laser machining data that is needed and associated development time, without negatively impacting accuracy or performance. The techniques presented here could be applied in a wide range of fields and have the potential to significantly reduce the time, and the costs associated with laser process optimisation.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 930
Author(s):  
Fahimeh Hadavimoghaddam ◽  
Mehdi Ostadhassan ◽  
Ehsan Heidaryan ◽  
Mohammad Ali Sadri ◽  
Inna Chapanova ◽  
...  

Dead oil viscosity is a critical parameter to solve numerous reservoir engineering problems and one of the most unreliable properties to predict with classical black oil correlations. Determination of dead oil viscosity by experiments is expensive and time-consuming, which means developing an accurate and quick prediction model is required. This paper implements six machine learning models: random forest (RF), lightgbm, XGBoost, multilayer perceptron (MLP) neural network, stochastic real-valued (SRV) and SuperLearner to predict dead oil viscosity. More than 2000 pressure–volume–temperature (PVT) data were used for developing and testing these models. A huge range of viscosity data were used, from light intermediate to heavy oil. In this study, we give insight into the performance of different functional forms that have been used in the literature to formulate dead oil viscosity. The results show that the functional form f(γAPI,T), has the best performance, and additional correlating parameters might be unnecessary. Furthermore, SuperLearner outperformed other machine learning (ML) algorithms as well as common correlations that are based on the metric analysis. The SuperLearner model can potentially replace the empirical models for viscosity predictions on a wide range of viscosities (any oil type). Ultimately, the proposed model is capable of simulating the true physical trend of the dead oil viscosity with variations of oil API gravity, temperature and shear rate.


Author(s):  
Francisco González ◽  
Pierangelo Masarati ◽  
Javier Cuadrado ◽  
Miguel A. Naya

Formulating the dynamics equations of a mechanical system following a multibody dynamics approach often leads to a set of highly nonlinear differential-algebraic equations (DAEs). While this form of the equations of motion is suitable for a wide range of practical applications, in some cases it is necessary to have access to the linearized system dynamics. This is the case when stability and modal analyses are to be carried out; the definition of plant and system models for certain control algorithms and state estimators also requires a linear expression of the dynamics. A number of methods for the linearization of multibody dynamics can be found in the literature. They differ in both the approach that they follow to handle the equations of motion and the way in which they deliver their results, which in turn are determined by the selection of the generalized coordinates used to describe the mechanical system. This selection is closely related to the way in which the kinematic constraints of the system are treated. Three major approaches can be distinguished and used to categorize most of the linearization methods published so far. In this work, we demonstrate the properties of each approach in the linearization of systems in static equilibrium, illustrating them with the study of two representative examples.


Sign in / Sign up

Export Citation Format

Share Document