Alternate Eddy Shedding Set Up by the Nonaxisymmetric Recirculation Zone at the Exhaust of a Cyclone Dust Separator

1998 ◽  
Vol 120 (1) ◽  
pp. 193-199 ◽  
Author(s):  
A. J. Griffiths ◽  
P. A. Yazdabadi ◽  
N. Syred

Two cyclone dust separators with geometric swirl numbers of 3.324 and 3.043 were used to analyze the motion of the complex three-dimensional time dependent motion set up in the free exhaust. A quantitative analysis of the flow was carried out, obtaining time dependent velocity measurements with the use of laser Doppler anemometry (L.D.A.) techniques. The investigations highlighted a eddy or vortex shedding mechanism in two distinct areas of the flow. This was in part caused by a reverse flow zone and a precessing vortex core within the exhaust region of the separator. Changes in the Reynolds number by a factor of 2 were observed to have no effect on the main characteristics of the flow. Some changes were seen in the flow structure with change in swirl number, particularly the size of the reverse flow zone and the position of the large engulfment vortices.

Author(s):  
N Syred ◽  
T O'Doherty ◽  
D Froud

This paper describes recent work at Cardiff to gain further understanding of the fundamental processes occurring in swirl burners. The phenomenon of the precessing vortex core has been characterized via the use of a two-component laser anemometry system and the signal from a hot-wire anemometry probe for triggering purposes. This has allowed the rotating three-dimensional flow associated with the precessing vortex core to be characterized for the first time at different downstream sections. Regions of reversed mean tangential velocity have been identified while new insights into the basic structure of the reverse flow zone have been provided.


2002 ◽  
Vol 450 ◽  
pp. 67-95 ◽  
Author(s):  
CH. BLOHM ◽  
H. C. KUHLMANN

The incompressible fluid flow in a rectangular container driven by two facing sidewalls which move steadily in anti-parallel directions is investigated experimentally for Reynolds numbers up to 1200. The moving sidewalls are realized by two rotating cylinders of large radii tightly closing the cavity. The distance between the moving walls relative to the height of the cavity (aspect ratio) is Γ = 1.96. Laser-Doppler and hot-film techniques are employed to measure steady and time-dependent vortex flows. Beyond a first threshold robust, steady, three-dimensional cells bifurcate supercritically out of the basic flow state. Through a further instability the cellular flow becomes unstable to oscillations in the form of standing waves with the same wavelength as the underlying cellular flow. If both sidewalls move with the same velocity (symmetrical driving), the oscillatory instability is found to be tricritical. The dependence on two sidewall Reynolds numbers of the ranges of existence of steady and oscillatory cellular flows is explored. Flow symmetries and quantitative velocity measurements are presented for representative cases.


2001 ◽  
Vol 432 ◽  
pp. 219-283 ◽  
Author(s):  
G. BRIASSULIS ◽  
J. H. AGUI ◽  
Y. ANDREOPOULOS

A decaying compressible nearly homogeneous and nearly isotropic grid-generated turbulent flow has been set up in a large scale shock tube research facility. Experiments have been performed using instrumentation with spatial resolution of the order of 7 to 26 Kolmogorov viscous length scales. A variety of turbulence-generating grids provided a wide range of turbulence scales with bulk flow Mach numbers ranging from 0.3 to 0.6 and turbulent Reynolds numbers up to 700. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay of incompressible isotropic turbulence. It was also found that the decay coefficient and the decay exponent decrease with increasing Mach number while the virtual origin increases with increasing Mach number. A possible mechanism responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from the cylindrical rods of the grid. Measurements of the time-dependent, three dimensional vorticity vectors were attempted for the first time with a 12-wire miniature probe. This also allowed estimates of dilatation, compressible dissipation and dilatational stretching to be obtained. It was found that the fluctuations of these quantities increase with increasing mean Mach number of the flow. The time-dependent signals of enstrophy, vortex stretching/tilting vector and dilatational stretching vector were found to exhibit a rather strong intermittent behaviour which is characterized by high-amplitude bursts with values up to 8 times their r.m.s. within periods of less violent and longer lived events. Several of these bursts are evident in all the signals, suggesting the existence of a dynamical flow phenomenon as a common cause.


Author(s):  
F. M. El-Mahallawy ◽  
M. A. Hassan ◽  
M. A. Ismail ◽  
H. Zafan

The purpose of this paper is to present and evaluate numerical experiments illustrating the flow features in a 3-D furnace utilizing unconventional asymmetrical jet that creates natural recirculation zone. The numerical simulation of this aerodynamic stabilization method have unveiled the three-dimensional nature of the flow pattern which possesses a quite large reverse flow region. The size and strength of the built recirculation zone would be capable of stabilizing the burning of low-quality fuels.


Author(s):  
S M Fraser ◽  
A M Abdel-Razek ◽  
M Z Abdullah

Three-dimensional turbulent flow in a model cyclone has been simulated using PHOENICS code and experimental studies carried out using a laser Doppler anemometry (LDA) system. The experimental results were used to validate the computed velocity distributions based on the standard and a modified k-∊ model. The standard k-∊ model was found to be unsatisfactory for the prediction of the flow field inside the cyclone chamber. By considering the strong swirling flow and the streamlined curvature, a k-∊ model, modified to take account of the Richardson number, provided better velocity distributions and better agreement with the experimental results.


1988 ◽  
Vol 110 (3) ◽  
pp. 515-522 ◽  
Author(s):  
P. Flamang ◽  
R. Sierens

This paper describes pressure and velocity measurements on a multipulse converter under steady-state conditions. Pressure loss coefficients were measured on this four-entry pulse converter system for a large number of flow configurations. Three-dimensional velocity measurements were done (with Laser-Doppler anemometry) for several flow configurations and at different cross sections in the converter. The normal flow situation (incoming flow at the four entries) and back flow situations were examined. For each cross section the axial velocity profiles, the secondary flow patterns, and the turbulent velocities are presented. From the pressure measurements mixing losses are derived. These are compared with the results of a one-dimensional calculation, which is based on the impulse law for incompressible flow. Taking into account the velocity measurements, this simplified model gives a remarkable agreement with the measured mixing losses.


1979 ◽  
Vol 166 (2) ◽  
pp. 289-298 ◽  
Author(s):  
Frans Van Schaik ◽  
Theo Rekveldt ◽  
Jan De Blois ◽  
Frank De Groot

2019 ◽  
Vol 196 ◽  
pp. 00032
Author(s):  
Roman Yusupov ◽  
Ivan Litvinov ◽  
Sergey Shtork

This work is devoted to the study of unsteady flow with the precessing vortex core (PVC) formed at the exit of a compact vane swirler with varying vanes angle and nozzles diameters. Amplitude-frequency characteristics of the PVC were obtained using two microphones. The modified Strouhal number dependence have showed a good generalization of the data for all nozzle diameters. The averaged and phase-averaged distributions of three components of velocity have been measured via the LDA system. The increasing the recirculation zone at increasing nozzle diameter for the swirl parameter Sg=0.53 and Re=1.5·104 was detected. The degeneration of PVC was detected for all studied nozzle diameters D = 30, 40, 50 mm. In case of smallest diameter D = 30 mm the PVC ceases to be periodic due to the absence of a recirculation zone. The three-dimensional structure of the PVC is reconstructed by the phase averaging method and visualized using the Q-criterion. Formation of the shifted recirculation zone, outer secondary vortex (OSV) and inner secondary vortex (ISV) is observed.


Author(s):  
Paris A. Fokaides ◽  
Plamen Kasabov ◽  
Nikolaos Zarzalis

We report on the experimental investigation of a confined lifted swirl nonpremixed flame by applying a novel Airblast nozzle (Zarzalis, N., et al., 2005, Fuel Injection Apparatus, Patent No. DE 10 2005 022 772.4, EP 06 009 563.5). 3D-laser doppler anemometry, a nonintrusive, laser-based measurement technique, is adapted for the measurement of all three mean velocity components and of the six Reynolds stress components. The determination of the temperature and mixture field occurs by employing in-flame measurement techniques. Valuable information concerning the mixing procedure, the temperature distribution, the turbulence level, and the velocity field of the flame is provided. The results demonstrate that there is sufficient residence time in the precombustion area of the lifted flame in order to achieve spatial and temporal uniformity of the mixture, leading to a quasi-premixed state. It was also found that hot reaction products, carried upstream by an annular zone of reverse flow, react with fresh unburnt mixture in a re-ignition process. The determination of the flow pattern revealed the presence of an inner weak recirculation zone in the nozzle vicinity and a dominant external recirculation zone. The examination of the probability density function of the velocity measurements was also found to be a very useful tool in terms of the analysis of the turbulence structure of the flow. The bimodal distribution in the shear layer between the downstream flow and the recirculated gases yields the existence of large scale eddies. Finally, the significant reduced NOx emissions in the lean area were also shown by means of emission measurements for elevated pressure conditions.


1980 ◽  
Vol 99 (1) ◽  
pp. 111-127 ◽  
Author(s):  
J. M. Owen ◽  
J. R. Pincombe

Flow visualization and laser-doppler anemometry have been used to determine the flow structure and measure the velocity distribution inside a rotating cylindrical cavity with an outer to inner radius ratio of 10, and an axial spacing to inner radius ratio of 2·67. A flow structure comprising an inner layer, Ekman layers, an outer layer and an interior potential core has been confirmed for the cases where the inlet air enters the cavity either axially, through a central hole, or radially, through a central gauze tube, and leaves radially through a series of holes in the peripheral shroud. Velocity measurements in the laminar Ekman layers agree well with the ‘modified linear theory’, and long-and short-wavelength disturbances (which have been reported by other experimenters) have been observed on the Ekman layers when the radial Reynolds number exceeds a critical value. The phenomenon of reverse flow in the Ekman layers and the possibility of ingress of external fluid through the holes in the shroud have also been observed.


Sign in / Sign up

Export Citation Format

Share Document