The Dependency of Takeoff Velocity and Friction on Head Geometry and Drive Configuration

1995 ◽  
Vol 117 (2) ◽  
pp. 350-357 ◽  
Author(s):  
Jerry J. K. Lee ◽  
J. Enguero ◽  
M. Smallen ◽  
A. Chao ◽  
E. Cha

Wear at the head-disk interface of magnetic recording devices is dependent on the contact sliding distance between the head and disk. The sliding distance is dependent on the head takeoff velocity and frictional drag. In this study, the dependence of takeoff velocity and friction on selected head parameters was measured with an air bearing spindle equipped with a strain gauge. For the thin film head, crown had the greatest influence on takeoff velocity, followed by bolt pattern runout, suspension preload, camber, skew angle, and rail width in decreasing order. For the metal-ingap head, ski jump had the greatest influence. The rest of the parameters followed in the same order as they did for the thin film head. Twist and edge blend did not affect takeoff velocity, but larger edge blends did improve contact start-stop performance. Lower mass disk stacks did better in contact start-stop tests because of their shorter sliding distance before reaching the takeoff velocity or after achieving the landing velocity. Finally, both crown and skew angle affected the coefficient of friction between the head and disk. Heads with a more positive crown or zero skew angle had the lowest coefficient of friction.

Author(s):  
Bo Liu ◽  
MingSheng Zhang ◽  
Yijun Man ◽  
Shengkai Yu ◽  
Gonzaga Leonard ◽  
...  

Author(s):  
Young Woo Kwon ◽  
Mun Ki Bae ◽  
Ri-Ichi Murakami ◽  
Tae Hwan Jang ◽  
Tae Gyu Kim

In this study, a DLC pattern was fabricated through a photolithography process that constitutes a part of the semiconductor process, to investigate the frictional wear characteristics. The photolithography was used to produce negative patterns with a pattern width of 10 [Formula: see text]m or 20 [Formula: see text]m and a pattern depth of 500 nm on the DLC surface. The change in the coefficient of friction of the surface was investigated through a ball-on-disk tribology test on the fabricated micro/nano-sized DLC pattern. The DLC pattern fabricated by the photolithography process showed a superior coefficient of friction to that of the general DLC sample. These results show that the decrease in the surface friction coefficient of the patterned DLC thin film is due to the reduction in the surface contact area owing to the modification of the micro/nano-texture of the surface as well as the low friction characteristics of the DLC.


2011 ◽  
Vol 287-290 ◽  
pp. 2339-2342
Author(s):  
Hong Rui Ao ◽  
Deng Pan ◽  
Hong Yuan Jiang

The contact at head/disk interface in hard disk drives subject to an external shock has been studied using the finite element method. A rigid cylinder moving over a two-layered thin film was implemented to simulate the contact between the recording slider and the disk. The effects of different friction coefficients on the von Mises stress of two-layered thin film were investigated. The relation between pressed depth and width of deformation has been obtained. Results show that the amplitude decreases with increase of friction coefficient while the period of slider motion is diminution. In addition, the stress distribution fits Hertzian contact theory.


1993 ◽  
Vol 8 (7) ◽  
pp. 1611-1628 ◽  
Author(s):  
Bharat Bhushan ◽  
Sreekanth Venkatesan

Silicon is an attractive material for the construction of read/write head sliders in magnetic recording applications from the viewpoints of ease of miniaturization and low fabrication cost. In the present investigation we have studied the friction and wear behavior of single-crystal, polycrystalline, ion-implanted, thermally oxidized (wet and dry), and plasma-enhanced chemical vapor deposition (PECVD) oxide-coated silicon pins while sliding against lubricated and unlubricated thin-film disks. For comparison, tests have also been conducted with Al2O3–TiC and Mn–Zn ferrite pins which are currently used as slider materials. With single-crystal silicon the rise in the coefficient of friction with sliding cycles is faster compared to Al2O3–TiC and Mn–Zn ferrite pins. In each case, the rise in friction is associated with the burnishing of the disk surface and transfer of amorphous carbon and lubricant (in the case of lubricated disks) from the disk to the pin. Thermally oxidized (under dry oxygen conditions) single-crystal silicon and PECVD oxide-coated single-crystal silicon exhibit excellent tribological characteristics while sliding against lubricated disks, and we believe this is attributable to the chemical passivity of the oxide coating. In dry nitrogen, the coefficient of friction for single-crystal silicon sliding against lubricated disks behaves differently than in air, decreasing from an initial value of 0.2 to less than 0.05 within 5000 cycles of sliding. We believe that silicon/thin-film disk interface friction and wear is governed by the uniformity and tenacity of the amorphous carbon transfer film and oxygen-enhanced fracture of silicon.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Sripathi V. Canchi ◽  
David B. Bogy ◽  
Run-Han Wang ◽  
Aravind N. Murthy

Accurate touchdown power detection is a prerequisite for read-write head-to-disk spacing calibration and control in current hard disk drives, which use the thermal fly-height control slider technology. The slider air bearing surface and head gimbal assembly design have a significant influence on the touchdown behavior, and this paper reports experimental findings to help understand the touchdown process. The dominant modes/frequencies of excitation at touchdown can be significantly different leading to very different touchdown signatures. The pressure under the slider at touchdown and hence the thermal fly-height control efficiency as well as the propensity for lubricant pickup show correlation with touchdown behavior which may be used as metrics for designing sliders with good touchdown behavior. Experiments are devised to measure friction at the head-disk interface of a thermal fly-height control slider actuated into contact. Parametric investigations on the effect of disk roughness, disk lubricant parameters, and air bearing surface design on the friction at the head-disk interface and slider burnishing/wear are conducted and reported.


1973 ◽  
Vol 15 (3) ◽  
pp. 232-234 ◽  
Author(s):  
J. Prakash ◽  
S. K. Vij

A plane porous slider bearing is analysed and closed form expressions for pressure, load, frictional drag, coefficient of friction and centre of pressure are obtained. The effect of porosity is to decrease the load capacity and friction. However, the coefficient of friction is increased.


Sign in / Sign up

Export Citation Format

Share Document