An Experimental Study of Transient Thermal Effects in a Plain Journal Bearing

1999 ◽  
Vol 121 (2) ◽  
pp. 327-332 ◽  
Author(s):  
B. Kucinschi ◽  
M. Fillon

The present study deals with the experimental determination of temperature distribution in a plain, steadily loaded journal bearing, during transient thermal periods such as start-up or slow changing in velocity. A number of chromel-alumel thermocouples, placed circumferentially in the median section of the bearing, are used in order to carry out the measurements. The temperature at film-shaft interface is also measured by means of a chromel-alumel thermocouple and a mercury transmitter. The effects of journal speed and load on bearing temperature and fluid friction torque are analyzed. The bearing temperature increases considerably with the increase of rotational speed. In addition, for slight bearing loads the bearing temperatures are greater than for higher loads, due to the oil recirculation. The fluid friction torque increases at start-up and afterwards tends to decrease because of the temperature rise which decreases the oil viscosity.

Author(s):  
Mihai B. Dobrica ◽  
Michel Fillon

In this paper, the influence of circumferential scratches on the thermohydrodynamic performance of a partial (lobe) journal bearing is studied. The bearing damage is characterized by four factors: the area of the scratched region, the density of the scratches within the affected area, the relative position of the scratched region and the relative depth of the wear defects. The bearing performance is characterized by minimum film thickness, average oil temperature, maximum pressure, friction torque etc., at imposed magnitude and direction of the load. A numerical hydrodynamic model with global thermal effects is used for studying the influence of the different wear related parameters on the bearing performance. The results permit to predict the overall performance loss due to the circumferential wear marks, for different wear profiles. The types of wear profiles that can lead to the bearing destruction (characterized by a critical minimum film thickness) are also investigated.


Lubricants ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Eckhard Schüler ◽  
Olaf Berner

In high speed, high load fluid-film bearings, the laminar-turbulent flow transition can lead to a considerable reduction of the maximum bearing temperatures, due to a homogenization of the fluid-film temperature in radial direction. Since this phenomenon only occurs significantly in large bearings or at very high sliding speeds, means to achieve the effect at lower speeds have been investigated in the past. This paper shows an experimental investigation of this effect and how it can be used for smaller bearings by optimized eddy grooves, machined into the bearing surface. The investigations were carried out on a Miba journal bearing test rig with Ø120 mm shaft diameter at speeds between 50 m/s–110 m/s and at specific bearing loads up to 4.0 MPa. To investigate the potential of this technology, additional temperature probes were installed at the crucial position directly in the sliding surface of an up-to-date tilting pad journal bearing. The results show that the achieved surface temperature reduction with the optimized eddy grooves is significant and represents a considerable enhancement of bearing load capacity. This increase in performance opens new options for the design of bearings and related turbomachinery applications.


Author(s):  
Biswajit Roy ◽  
Sudip Dey

The precise prediction of a rotor against instability is needed for avoiding the degradation or failure of the system’s performance due to the parametric variabilities of a bearing system. In general, the design of the journal bearing is framed based on the deterministic theoretical analysis. To map the precise prediction of hydrodynamic performance, it is needed to include the uncertain effect of input parameters on the output behavior of the journal bearing. This paper presents the uncertain hydrodynamic analysis of a two-axial-groove journal bearing including randomness in bearing oil viscosity and supply pressure. To simulate the uncertainty in the input parameters, the Monte Carlo simulation is carried out. A support vector machine is employed as a metamodel to increase the computational efficiency. Both individual and compound effects of uncertainties in the input parameters are studied to quantify their effect on the steady-state and dynamic characteristics of the bearing.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 930
Author(s):  
Fahimeh Hadavimoghaddam ◽  
Mehdi Ostadhassan ◽  
Ehsan Heidaryan ◽  
Mohammad Ali Sadri ◽  
Inna Chapanova ◽  
...  

Dead oil viscosity is a critical parameter to solve numerous reservoir engineering problems and one of the most unreliable properties to predict with classical black oil correlations. Determination of dead oil viscosity by experiments is expensive and time-consuming, which means developing an accurate and quick prediction model is required. This paper implements six machine learning models: random forest (RF), lightgbm, XGBoost, multilayer perceptron (MLP) neural network, stochastic real-valued (SRV) and SuperLearner to predict dead oil viscosity. More than 2000 pressure–volume–temperature (PVT) data were used for developing and testing these models. A huge range of viscosity data were used, from light intermediate to heavy oil. In this study, we give insight into the performance of different functional forms that have been used in the literature to formulate dead oil viscosity. The results show that the functional form f(γAPI,T), has the best performance, and additional correlating parameters might be unnecessary. Furthermore, SuperLearner outperformed other machine learning (ML) algorithms as well as common correlations that are based on the metric analysis. The SuperLearner model can potentially replace the empirical models for viscosity predictions on a wide range of viscosities (any oil type). Ultimately, the proposed model is capable of simulating the true physical trend of the dead oil viscosity with variations of oil API gravity, temperature and shear rate.


1997 ◽  
Vol 119 (1) ◽  
pp. 132-141 ◽  
Author(s):  
J. T. Sawicki ◽  
R. J. Capaldi ◽  
M. L. Adams

This paper describes an experimental and theoretical investigation of a four-pocket, oil-fed, orifice-compensated hydrostatic bearing including the hybrid effects of journal rotation. The test apparatus incorporates a double-spool-shaft spindle which permits independent control over the journal spin speed and the frequency of an adjustable-magnitude circular orbit, for both forward and backward whirling. This configuration yields data that enables determination of the full linear anisotropic rotordynamic model. The dynamic force measurements were made simultaneously with two independent systems, one with piezoelectric load cells and the other with strain gage load cells. Theoretical predictions are made for the same configuration and operating conditions as the test matrix using a finite-difference solver of Reynolds lubrication equation. The computational results agree well with test results, theoretical predictions of stiffness and damping coefficients are typically within thirty percent of the experimental results.


2012 ◽  
Vol 16 (2) ◽  
pp. 623-627 ◽  
Author(s):  
Jordan Hristov

Simple 1-D semi-infinite heat conduction problems enable to demonstrate the potential of the fractional calculus in determination of transient thermal impedances of two bodies with different initial temperatures contacting at the interface ( x = 0 ) at t = 0 . The approach is purely analytic and uses only semi-derivatives (half-time) and semi-integrals in the Riemann-Liouville sense. The example solved clearly reveals that the fractional calculus is more effective in calculation the thermal resistances than the entire domain solutions.


2018 ◽  
Vol 85 (6) ◽  
pp. 434-442 ◽  
Author(s):  
Noushin Mokhtari ◽  
Clemens Gühmann

Abstract For diagnosis and predictive maintenance of mechatronic systems, monitoring of bearings is essential. An important building block for this is the determination of the bearing friction condition. This paper deals with the possibility of monitoring different journal bearing friction states, such as mixed and fluid friction, and examines a new approach to distinguish between different friction intensities under several speed and load combinations based on feature extraction and feature selection methods applied on acoustic emission (AE) signals. The aim of this work is to identify separation effective features of AE signals to subsequently classify the journal bearing friction states. Furthermore, the acquired features give information about the mixed friction intensity, which is significant for remaining useful lifetime (RUL) prediction. Time domain features as well as features in the frequency domain have been investigated in this work. To increase the sensitivity of the extracted features the AE signals were transformed to the frequency-time-domain using continuous wavelet transform (CWT). Significant frequency bands are determined to separate different friction states more effective. A support vector machine (SVM) is used to classify the signals into three different friction classes. In the end the idea for an RUL prediction method by using the already determined information is given and explained.


Author(s):  
Petr S. Gulyaev ◽  
Alexander N. Teplykh ◽  
Andrey Y. Dyachenko

Most of the failures of turbine flow converters (TFC) used in the Russian system of main oil pipelines and oil product pipelines are caused by abrupt changes in the viscosity of the transported medium. In studies related to determination of the influence of the rheological properties of the pumped oil on the metrological characteristics of TFC that have a calibration curve in the form of a piecewise approximation without taking into account the correlation of TFC rotor speed with the viscosity of the pumped liquid in the flow rate subrange, the instability of the metrological characteristics in the operating range is observed. Taking into account the tendency to increase the volume of production and pumping of high-viscosity oils it can be assumed that the irregularity of the metrological characteristics of TFC, expressed in the change in the conversion factor will remain, which will negatively affect the reliability of accounting operations using oil quality control system (OQCS). Accordingly there is a need to maintain the error of TFC within the set limits in the subranges and throughout the entire range of flow rates. According to the results of the study performed by the authors it was confirmed that for the TFC of MVTM type the use of the calibration curve in the form of a piecewise-parabolic approximation with the dependence of the conversion factor on the ratio of TFC pulse frequency to the oil viscosity makes it possible to minimize the effect of changes in the parameters of the pumped medium on the measurement accuracy and as a consequence to stabilize the metrological characteristics of TFC in the recalibration interval, eliminate the costs of performing out-of-turn verifications, increase the accuracy and metrological reliability of the OQCS. Большинство отказов турбинных преобразователей расхода (ТПР), используемых в российской системе магистральных нефтепроводов и нефтепродуктопроводов, обусловлено резкими изменениями вязкости транспортируемой среды. В исследованиях по определению влияния реологических свойств перекачиваемой нефти на метрологические характеристики ТПР, имеющих градуировочную характеристику в виде кусочно-линейной аппроксимации без учета корреляции частоты вращения ротора ТПР с вязкостью перекачиваемой жидкости в поддиапазоне расхода, отмечается нестабильность метрологических характеристик в рабочем диапазоне. Учитывая тенденцию увеличения объема добычи и перекачки высоковязких нефтей, можно предположить, что непостоянность метрологических характеристик ТПР, выражаемая в изменении коэффициента преобразования, сохранится, что негативно скажется на достоверности учетных операций с применением систем измерений количества и показателей качества нефти (СИКН). Соответственно, возникает потребность в поддержании погрешности ТПР в установленных пределах в поддиапазонах и во всем диапазоне расходов. По результатам проведенного авторами исследования подтверждено, что для ТПР типа MVTM использование градуировочной характеристики в виде кусочно-параболической аппроксимации с зависимостью коэффициента преобразования от отношения частоты импульсов ТПР к вязкости нефти позволяет минимизировать влияние изменений параметров перекачиваемой среды на точность измерений и, как следствие, стабилизировать метрологические характеристики ТПР в межповерочном интервале, исключить затраты на выполнение внеочередных поверок, повысить точность и метрологическую надежность СИКН.


Author(s):  
Aoshuang Ding ◽  
Xuesong Li

Abstract This paper analyses the flow characteristics and oil-air distributions of oil flows in a tilting-pad journal bearing under different bearing loads. This titling-pad journal bearing is working at 3000 rpm rotation speed and its minimum film thicknesses have been measured under different loads from 180 kN to 299 kN. Based on the previous researches of this bearing under 180 kN, the gaseous cavitation and low-turbulence flow exists in this bearing flow. A suitable gaseous cavitation model and the SST model with low-Re correction are used in the film flow simulations. With the rotor and pads assumed to be rigid, the dynamic mesh and motion equations are applied to simulate the motions of the rotor and the rotations of the pads. Based on the simulation results under different bearing loads, the simulated minimum film thicknesses agrees well with the measured data. It indicates that the simulation results can catch the film geometries and flows correctly. With the load increasing, the rotor moves closer to the loaded pads and the minimum film thickness decreases. Taking the effect of boundary layers into consideration, the turbulence has a negative relationship with the film thickness and decreases in the loaded area under higher bearing load. It can be verified by the simulated lower turbulent viscosity ratio distributions in the loaded pads. In the unloaded area, both the film thickness and turbulence viscosity ratio are positively related to the bearing loads. Thus, the higher bearing load may lead the flow to be more different in the loaded and unloaded area, and the turbulence in the loaded pads may transfer to laminar in the end. As for the oil-air distributions, in the unloaded pads, with the bearing load increasing, the simulated air volume fraction increases in the unloaded pads with lower pressure. It should be caused by the higher film thickness of the unloaded pads under higher loads. In sum, the flow turbulence and cavitation process changes with the bearing load. With a higher load, the cavitation becomes more in the unloaded pads and the flow changes sharper from the high-turbulence unloaded area to the low-turbulence loaded area. As the simulation results is in good accordance with the experimental data, the SST model with low-Re correction and the gaseous cavitation model are verified to be suitable for bearing film simulations under different loads.


Sign in / Sign up

Export Citation Format

Share Document