Computation of Turbulent Flow in a Thin Liquid Layer of Fluid Involving a Hydraulic Jump

1991 ◽  
Vol 113 (3) ◽  
pp. 411-418 ◽  
Author(s):  
M. M. Rahman ◽  
A. Faghri ◽  
W. L. Hankey

Numerically computed flow fields and free surface height distributions are presented for the flow of a thin layer of liquid adjacent to a solid horizontal surface that encounters a hydraulic jump. Two kinds of flow configurations are considered: two-dimensional plane flow and axisymmetric radial flow. The computations used a boundary-fitted moving grid method with a k-ε model for the closure of turbulence. The free surface height was determined by an optimization procedure which minimized the error in the pressure distribution on the free surface. It was also checked against an approximate procedure involving integration of the governing equations and use of the MacCormack predictor-corrector method. The computed film height also compared reasonably well with previous experiments. A region of recirculating flow as found to be present adjacent to the solid boundary near the location of the jump, which was caused by a rapid deceleration of the flow.

Author(s):  
Z. Gu ◽  
M. A. R. Sharif

Abstract The two-dimensional turbulent recirculating flow fields behind a V-shaped bluff body have been investigated numerically. Similar bluff bodies are used in combustion chambers for flame stabilization. The governing transport equations in conservative form are solved by a pressure based predictor-corrector method. The standard k-ϵ turbulence closure model and a boundary fitted multi-block curvilinear grid system are used in the computation. The code is validated against turbulent flow over a backward facing step problem. The predicted flow field behind the bluff body is also compared with experiment. It is found that while the qualitative features of the flow are well predicted, there is quantitative disagreement between the measurement and prediction. This disagreement can be partially attributed to the k-ϵ turbulence model which is known to be inadequate for recirculating flows. Parametric investigation of the flow field by varying the shape and size of the bluff body is also performed and the results are reported.


2018 ◽  
Vol 01 (02) ◽  
pp. 1840002 ◽  
Author(s):  
Shilong Liu ◽  
Ioan Nistor ◽  
Majid Mohammadian

The smoothed particle hydrodynamics (SPH) method has been proved as a powerful algorithm for fluid mechanics, especially in the simulation of free surface flows with high speeds or drastic impacts. The solid boundary treatment method is important for the accuracy and stability of the numerical results, as the support domain of fluid particles is truncated near the vicinity of the boundary. This paper presents two commonly used methods for simulating a solid boundary in SPH simulations. Emphasis is placed on the description of the methods, definition of the boundary particles’ parameters, and discussion of their advantages and shortcomings. The classical dam break simulation is conducted using self-developed code and open source models such as DualSPHysics and PySPH in order to investigate the effects of the boundary methods. The results show that methods based on dynamic boundary particles can simulate the free water surface well with a good agreement with experimental results. The conclusions can also be used in research for boundary implementation methods for practical ocean and coastal engineering problems with free surface flows.


2006 ◽  
Author(s):  
Jiangang Zhao ◽  
Roger E. Khayat

The similarity solutions are presented for the wall flow which is formed when a smooth planar jet of power-law fluids impinges vertically on to a horizontal plate, and spreads out in a thin layer bounded by a hydraulic jump. This problem is formulated analogous to radial jet flow problem and the solution procedure is accounted for by means of similarity solution of the boundary-layer equation [1] for Newtonian fluids. For the convenience of analysis, the flow may be divided into three regions, namely a developing boundary-layer region, a fully viscous boundary-layer region, and a hydraulic jump region. The similarity solutions of the film thickness and free surface velocity in fully viscous boundary-layer region include unknown constant L, which is solved numerically and approximately in the developing boundary-layer flow region. Comparison between the numerical and approximate solutions leads generally to good agreement, except for severely shear-thinning fluids. The boundary-layer solution depends on two parameters: power-law index n and α, the dimensionless flow parameters. The effect of α on film thickness and free surface velocity is investigated. The relations between the position of the hydraulic jump and dimensionless flow parameter are obtained and the effect of α on the position of the jump is presented.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1758
Author(s):  
Juan Macián-Pérez ◽  
Francisco Vallés-Morán ◽  
Santiago Sánchez-Gómez ◽  
Marco De-Rossi-Estrada ◽  
Rafael García-Bartual

The study of the hydraulic jump developed in stilling basins is complex to a high degree due to the intense velocity and pressure fluctuations and the significant air entrainment. It is this complexity, bound to the practical interest in stilling basins for energy dissipation purposes, which brings the importance of physical modeling into the spotlight. However, despite the importance of stilling basins in engineering, bibliographic studies have traditionally focused on the classical hydraulic jump. Therefore, the objective of this research was to study the characteristics of the hydraulic jump in a typified USBR II stilling basin, through a physical model. The free surface profile and the velocity distribution of the hydraulic jump developed within this structure were analyzed in the model. To this end, an experimental campaign was carried out, assessing the performance of both, innovative techniques such as the time-of-flight camera and traditional instrumentation like the Pitot tube. The results showed a satisfactory representation of the free surface profile and the velocity distribution, despite some discussed limitations. Furthermore, the instrumentation employed revealed the important influence of the energy dissipation devices on the flow properties. In particular, relevant differences were found for the hydraulic jump shape and the maximum velocity positions within the measured vertical profiles, when compared to classical hydraulic jumps.


2020 ◽  
Vol 31 (10) ◽  
pp. 104003
Author(s):  
Robert Ljubičić ◽  
Ivana Vićanović ◽  
Budo Zindović ◽  
Radomir Kapor ◽  
Ljubodrag Savić

Author(s):  
Hossein Askarizadeh ◽  
Hossein Ahmadikia ◽  
Claas Ehrenpreis ◽  
Reinhold Kneer ◽  
Ahmadreza Pishevar ◽  
...  

1993 ◽  
Vol 20 (3) ◽  
pp. 536-539 ◽  
Author(s):  
Willi H. Hager

Based on a large number of experiments, a simple formula is developed for the time-averaged free surface profile of a classical hydraulic jump. This novel approach is based on the length of the roller. The resulting surface profile fits the data well for usual inflow Froude numbers in the range of 2 to 10. Key words: backwater, channel flow, hydraulics, open channel, surface profile.


2015 ◽  
Vol 767 ◽  
pp. 811-841 ◽  
Author(s):  
C. Frederik Brasz ◽  
Craig B. Arnold ◽  
Howard A. Stone ◽  
John R. Lister

AbstractWhen a solid boundary deforms rapidly into a quiescent liquid layer, a flow is induced that can lead to jet formation. An asymptotic analytical solution is presented for this flow, driven by a solid boundary deforming with dimensionless vertical velocity $V_{b}(x,t)={\it\epsilon}(1+\cos x)\,f(t)$, where the amplitude ${\it\epsilon}$ is small relative to the wavelength and the time dependence $f(t)$ approaches 0 for large $t$. Initially, the flow is directed outwards from the crest of the deformation and slows with the slowing of the boundary motion. A domain-perturbation method is used to reveal that, when the boundary stops moving, nonlinear interactions with the free surface leave a remnant momentum directed back towards the crest, and this momentum can be a precursor to jet formation. This scenario arises in a laser-induced printing technique in which an expanding blister imparts momentum into a liquid film to form a jet. The analysis provides insight into the physics underlying the interaction between the deforming boundary and free surface, in particular, the dependence of the remnant flow on the thickness of the liquid layer and the deformation amplitude and wavelength. Numerical simulations are used to show the range of validity of the analytical results, and the domain-perturbation solution is extended to an axisymmetric domain with a Gaussian boundary deformation to compare with previous numerical simulations of blister-actuated laser-induced forward transfer.


2016 ◽  
Vol 13 (04) ◽  
pp. 1641001 ◽  
Author(s):  
J. R. Shao ◽  
S. M. Li ◽  
M. B. Liu

This paper presents an implementation of an improved smoothed particle hydrodynamics (SPH) method for simulating violent water impinging jet flow problems. The presented SPH method involves three major modifications on the traditional SPH method, (1) The kernel gradient correction (KGC) and density correction are used to improve the computational accuracy and obtain smoothed pressure field, (2) a coupled dynamic solid boundary treatment (SBT) is used to remove the numerical oscillation near the solid boundary and ensure no penetration condition, (3) a free surface condition, which is obtained from the summation of kernel function and volume, is used to describe the water jet accurately. Different cases about violent impinging jet flows are simulated. The influences of impact velocity and angles are investigated. It is demonstrated that the presented SPH method has very good performance with accurate impinging jet patterns and pressure field distribution. It is also found that the pressure time histories of observation points are greatly influenced by the rarefaction wave from surrounding air. Closer distance from free surface can lead to quicker decay of the pressure time history.


1872 ◽  
Vol 7 ◽  
pp. 63-68 ◽  
Author(s):  
William Thomson

In a closed vessel containing only a liquid and its vapour, all at one temperature, the liquid rests, with its free surface raised or depressed in capillary tubes and in the neighbourhood of the solid boundary, in permanent equilibrium according to the same law of relation between curvature and pressure as in vessels open to the air. The permanence of this equilibrium implies physical equilibrium between the liquid and the vapour in contact with it at all parts of its surface. But the pressure of the vapour at different levels differs according to hydrostatic law. Hence the pressure of saturated vapour in contact with a liquid differs according to the curvature of the bounding surface, being less when the liquid is concave, and greater when it is convex.


Sign in / Sign up

Export Citation Format

Share Document