A Shortcut Fatigue Analysis Method

1990 ◽  
Vol 112 (1) ◽  
pp. 1-5 ◽  
Author(s):  
H. M. Thompson

A shortcut fatigue analysis method is presented which can be used to provide fatigue life estimates during the preliminary design phase of deepwater fixed platforms. For this type of structure, the method is intended to provide order of magnitude fatigue life estimates only. For simpler structures, such as deepwater offshore caissons, the shortcut analysis can provide good agreement with a detailed spectral fatigue analysis. The fundamental assumption of the method is that the dynamic transfer function can be closely approximated by the product of the static transfer function and a single degree of freedom dynamic amplification factor, which has been adjusted to produce a “fit” to the true DAF at resonance. Only one dynamic analysis of the structure needs to be performed, i.e., to determine the true DAF at resonance.

2008 ◽  
Vol 44-46 ◽  
pp. 733-738 ◽  
Author(s):  
Bing Rong Miao ◽  
Wei Hua Zhang ◽  
Shou Ne Xiao ◽  
Ding Chang Jin ◽  
Yong Xiang Zhao

Railway vehicle structure fatigue life consumption monitoring can be used to determine fatigue damage by directly or indirectly monitoring the loads placed on critical vehicle components susceptible to failure from fatigue damage. The sample locomotive carbody structure was used for this study. Firstly, the hybrid fatigue analysis method was used with Multi-Body System (MBS) simulation and Finite Element Method (FEM) for evaluating the carbody structure dynamic stress histories. Secondly, the standard fatigue time domain method was used in fatigue analysis software FE-FATIGUE and MATLAB WAFO (Wave Analysis for Fatigue and Oceanography) tools. And carbody structure fatigue life and fatigue damage were predicted. Finally, and carbody structure dynamic stress experimental data was taken from this locomotive running between Kunming-Weishe for this analysis. The data was used to validate the simulation results based on hybrid method. The analysis results show that the hybrid method prediction error is approximately 30.7%. It also illustrates that the fatigue life and durability of the locomotive can be predicted with this hybrid method. The results of this study can be modified to be representative of the railway vehicle dynamic stress test.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4190
Author(s):  
Jincheng Zheng ◽  
Peiwei Zhang ◽  
Dahai Zhang ◽  
Dong Jiang

A multi-scale fatigue analysis method for braided ceramic matrix composites (CMCs) based on sub-models is developed in this paper. The finite element shape function is used as the interpolation function for transferring the displacement information between the macro-scale and meso-scale models. The fatigue failure criterion based on the shear lag theory is used to implement the coupling calculation of the meso-scale and micro-scale. Combining the meso-scale cell model and the fatigue failure criterion based on the shear lag theory, the fatigue life of 2D SiC/SiC is analyzed. The analysis results are in good agreement with the experimental results, which proves the accuracy of the meso-scale cell model and the fatigue life calculation method. A multi-scale sub-model fatigue analysis method is used to study the fatigue damage of 2D SiC/SiC stiffened plates under random tension–tension loads. The influence of the sub-models at different positions in the macro-model element on the analysis results was analyzed. The results shows that the fatigue analysis method proposed in this paper takes into account the damage condition of the meso-structured of composite material, and at the same time has high calculation efficiency, and has low requirements for modeling of the macro finite element model, which can be better applied to the fatigue analysis of CMCs structure.


2013 ◽  
Vol 690-693 ◽  
pp. 1960-1965 ◽  
Author(s):  
Sheng Qu ◽  
Ping Bo Wu ◽  
Zhuan Hua Liu

G70 Tank car uesd for transportation on liquidsliquids of gas and bulck goods in form of powder,is one of the major class of Chinese railroad freight cars.And the tank car makes about 18% of the toatal amount of freight cars. In this stduy, the carbdoy finite element model of tank car was constructed,and calculated stress of carbody both empty car and fully loaded car,then get the results of key postsitions. According to the AAR load spectrums on the part of the tank car,translated the results into dynamic stress through the quasi-static method. Calculated the damage of carbody with the fatigue analysis method provied in AAR, compared the fatigue life under various comonent.


2021 ◽  
pp. 105678952110460
Author(s):  
Sunil Kumar Sharma ◽  
Rakesh Chandmal Sharma ◽  
Jaesun Lee

In this paper, a multi-disciplinary analysis method is proposed for evaluating the fatigue life of railway vehicle car body structure under random dynamic loads. Firstly, the hybrid fatigue analysis method was used with Multi-Body System simulation and finite element method for evaluating the carbody structure dynamic stress histories. The dynamics stress is calculated from the longitudinal load using longitudinal train dynamics. Secondly, the nonlinear damage accumulation model was used in fatigue analysis, and carbody structure fatigue life and fatigue damage were predicted. The mathematical model simulations are compared with results produced experimentally, showing good agreement. Finally, the mode is determined after the finite element model is established. To achieve the dynamic stress at each node, the modal response is used as excitation. The carbody damage was obtained by combining dynamics stress with the NMCCMF damage accumulation model. As a result, the effect of longitudinal load on carbody fatigue damage is investigated. The longitudinal load contributes significantly to the fatigue damage of the carbody.


1977 ◽  
Vol 17 (06) ◽  
pp. 431-440 ◽  
Author(s):  
K.G. Nolte ◽  
J.E. Hansford

Abstract Closed-form mathematical expressions are derived for the fatigue damage of structures because of ocean waves. The expressions incorporate relationships between wave height and stress range, between stress range and number of cycles to failure (i.e., a fatigue curve), and the probability distribution for the occurrence of wave heights. The expressions can be used to predict the fatigue damage resulting from a single sea state, from a storm, or during the service life of a structure. Also, the fatigue life of a structural element can be determined directly from the stress range resulting from the design wave, or conversely, an "allowable stress range" can be determined for the design wave that will insure a specified fatigue life. Example applications are given for areas having wave climates similar to the North Sea and the Gulf of Mexico. Introduction Ocean waves encountering a structure cause the stress in each structural element to cycle. The accumulated effect of the stress cycles can cause element of an improperly designed structure to fail because of fatigue. In general, from the standpoint of fatigue damage, there are two categories of structures:structures with a response to ocean waves that are significantly affected by dynamic amplification andstructures without significant dynamic amplification. This paper will be restricted to the last category of structures for which dynamic amplification can be neglected for fatigue analyses. The current state-of-practice for the fatigue analysis of ocean structures is summarized by Marshall. The analysis of the fatigue life of a structure requires a lengthy numerical calculation procedure which utilizes: procedure which utilizes:The appropriate curve for the structural element being considered. The curve relates the number of cycles to failure (N) for a cyclic stress range (), having a constant amplitude (see Fig. 1).The Palmgren-Miner rule that predicts the cumulative effect of stress cycles having different amplitudes.An empirical relationship between the wave height encountering the structure and the stress range induced in the structural element for all wave heights that the structure will encounter.A statistical description of the occurrence rates for wave heights that the structure will encounter during its life. The numerical analysis consists of breaking the range of wave heights into discrete bands and determining the number of waves that will occur in each height band. For each height band, the stress range corresponding to the mid-band height is determined for the structural element. Then, the curve is used to determine the fatigue damage for the element because of the stress range associated with each height band. The final step is to accumulate the damage for all height bands using the Palmgren-Miner rule. This procedure can be undertaken manually in a straightforward, time-consuming manner or can be programmed for a digital computer. As a result of the time required to undertake the procedure for each fatigue-prone element, a fatigue procedure for each fatigue-prone element, a fatigue analysis rarely is undertaken during the initial design phase of a structure. Instead, during the initial design, members are sized only on the basis of ultimate loading and a fatigue analysis is performed after the initial design. If the analysis performed after the initial design. If the analysis indicates potential fatigue problems, the design procedure is recycled. procedure is recycled. In this paper, closed-form expressions are derived that permit a fatigue analysis to be performed quickly, compared with the equivalent performed quickly, compared with the equivalent numerical procedure outlined above. The expressions can be applied manually or as part of a stress analysis computer program. As a result, fatigue considerations can be integrated into the initial phase of the design along with ultimate stress phase of the design along with ultimate stress considerations. The closed-form equations yield results that are no better nor worse, but equal to a careful numerical analysis. The sufficiency of such a procedure depends on the situation and must be decided on a case-to-case basis. SPEJ P. 431


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2171
Author(s):  
Armin Yousefi ◽  
Ahmad Serjouei ◽  
Reza Hedayati ◽  
Mahdi Bodaghi

In the present study, the fatigue behavior and tensile strength of A6061-T4 aluminum alloy, joined by friction stir spot welding (FSSW), are numerically investigated. The 3D finite element model (FEM) is used to analyze the FSSW joint by means of Abaqus software. The tensile strength is determined for FSSW joints with both a probe hole and a refilled probe hole. In order to calculate the fatigue life of FSSW joints, the hysteresis loop is first determined, and then the plastic strain amplitude is calculated. Finally, by using the Coffin-Manson equation, fatigue life is predicted. The results were verified against available experimental data from other literature, and a good agreement was observed between the FEM results and experimental data. The results showed that the joint’s tensile strength without a probe hole (refilled hole) is higher than the joint with a probe hole. Therefore, re-filling the probe hole is an effective method for structures jointed by FSSW subjected to a static load. The fatigue strength of the joint with a re-filled probe hole was nearly the same as the structure with a probe hole at low applied loads. Additionally, at a high applied load, the fatigue strength of joints with a refilled probe hole was slightly lower than the joint with a probe hole.


2021 ◽  
pp. 136943322199249
Author(s):  
Xing Li ◽  
Jiwen Zhang ◽  
Jun Cheng

This paper presents fatigue behaviors and the stiffness degradation law of concrete continuous beams with external prestressed carbon fiber-reinforced polymer (CFRP) tendons. Three specimens were tested under fatigue loading, and the influence of different load levels on the stiffness degradation and fatigue life were studied, and it was found that the stiffness degradation of three test specimens exhibited a three-stage change rule, namely rapid decrease, stable degradation, and sharp decline, but there are obvious differences in the rate and amplitude of stiffness degradation. The load level has a significant influence on the fatigue life of the test specimens. An analytical model with load level considered was proposed to calculate the residual stiffness and predict the stiffness degradation, which is in good agreement with the test results. The model of stiffness degradation presents a possible solution for practical engineering applications of concrete continuous beams with externally prestressed CFRP tendons subjected to different fatigue loadings.


Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 305-310 ◽  
Author(s):  
Roy Middleton ◽  
David Fink ◽  
Jeffrey Klein ◽  
Pankaj Sharma

We have made the first measurements without pre-enrichment of 41Ca in terrestrial rock and bone samples using accelerator mass spectrometry. Although the results in tufa deposits from Egypt are in good agreement with the saturation value of 8×10-15 predicted by Raisbeck and Yiou (1979), the average 41Ca:40Ca ratio of 2×10-15 (range: 0.6 to 4.2×10-15) that we measure in modern bone is an order of magnitude lower than that obtained previously by Henning, et al (1987) on a cow bone that was measured using AMS following isotope enrichment. The low value and the variability (more than a factor of seven) of the 41Ca:40Ca ratio in modern bone make the possibility of dating bones using 41Ca unlikely.


Sign in / Sign up

Export Citation Format

Share Document