Web-Based, Interactive Laboratory Experiment in Turbomachine Aerodynamics

2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Nalin Navarathna ◽  
Vitalij Fedulov ◽  
Andrew Martin ◽  
Torsten Fransson

Remote laboratory exercises are gaining popularity due to advances in communication technologies along with the need to provide realistic yet flexible educational tools for tomorrow’s engineers. Laboratory exercises in turbomachinery aerodynamics generally involve substantial equipment in both size and power, so the development of remotely controlled facilities has perhaps not occurred as quickly as in other fields. This paper presents an overview of a new interactive laboratory exercise involving aerodynamics in a linear cascade of stator blades. The laboratory facility consists of a high-speed fan that delivers a maximum of 2.5 kg/s of air to the cascade. Traversing pneumatic probes are used to determine pressure profiles at upstream and downstream locations, and loss coefficients are later computed. Newly added equipment includes cameras, stepper motors, and a data acquisition and control system for remote operation. This paper presents the laboratory facility in more detail and includes discussions related to user interface issues, the development of a virtual laboratory exercise as a complement to experiments, and comparative evaluation of virtual, remote, and local laboratory exercises.

Author(s):  
Nalin Navarathna ◽  
Vitalij Fedulov ◽  
Andrew Martin ◽  
Torsten Fransson

Remote laboratory exercises are gaining popularity due to advances in communication technologies along with the need to provide realistic yet flexible educational tools for tomorrow’s engineers. Laboratory exercises in turbomachinery aerodynamics generally involve substantial equipment in both size and power, so the development of remotely controlled facilities has perhaps not occurred as quickly as in other fields. This paper presents an overview of a new interactive laboratory exercise involving aerodynamics in a linear cascade of stator blades. The laboratory facility consists of a high-speed fan that delivers a maximum of 2.5 kg/s of air to the cascade. Traversing pneumatic probes are used to determine pressure profiles at upstream and downstream locations, and loss coefficients are later computed. Newly added equipment includes cameras, stepper motors, and a data acquisition and control system for remote operation. This paper presents the laboratory facility in more detail and includes discussions related to user interface issues, the development of a virtual laboratory exercise as a complement to experiments, and comparative evaluation of Virtual, Remote and Local laboratory exercises.


Sensi Journal ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 236-246
Author(s):  
Ilamsyah Ilamsyah ◽  
Yulianto Yulianto ◽  
Tri Vita Febriani

The right and appropriate system of receiving and transferring goods is needed by the company. In the process of receiving and transferring goods from the central warehouse to the branch warehouse at PDAM Tirta Kerta Raharja, Tangerang Regency, which is currently done manually is still ineffective and inaccurate because the Head of Subdivision uses receipt documents, namely PPBP and mutation of goods, namely MPPW in the form of paper as a submission media. The Head of Subdivision enters the data of receipt and mutation of goods manually and requires a relatively long time because at the time of demand for the transfer of goods the Head of Subdivision must check the inventory of goods in the central warehouse first. Therefore, it is necessary to hold a design of information systems for the receipt and transfer of goods from the central warehouse to a web-based branch warehouse that is already database so that it is more effective, efficient and accurate. With the web-based system of receiving and transferring goods that are already datatabed, it can facilitate the Head of Subdivision in inputing data on the receipt and transfer of goods and control of stock inventory so that the Sub Head of Subdivision can do it periodically to make it more effective, efficient and accurate. The method of data collection is done by observing, interviewing and studying literature from various previous studies, while the system analysis method uses the Waterfall method which aims to solve a problem and uses design methods with visual modeling that is object oriented with UML while programming using PHP and MySQL as a database.


2010 ◽  
Vol 130 (12) ◽  
pp. 2276-2285
Author(s):  
Shintaro Yanagihara ◽  
Akira Ishihara ◽  
Toshinao Ishii ◽  
Junichi Kitsuki ◽  
Kazuo Seo

2020 ◽  
Vol 11 (2) ◽  
pp. 347-352
Author(s):  
Atanaska Peneva ◽  

The report presents the author’s experience in integrating modern ICT technologies in the process of teaching and learning in school. The emphasis is on the use of mobile devices and the integration of cloud technologies in schools. As an ICT teacher, the author provides some practical guidelines on how to apply innovation. The generation of 7 screens does not know a world without digital technologies and mobile communications. The discrepancy between the expectations of the digital generation and the reality in our schools is in terms of the information and communication technologies (ICT) used in them and the didactic models. Adolescents, when they find themselves in an environment that does not meet their expectations, are demotivated and redirect their attention to other objects and goals and stop being active in class. The use of the so-called. „Cloud“ technologies will significantly increase the interest and retention of students. The modern approach to building information systems is focused on developing solutions in which the collection, input and output of information is carried out through WEB-based applications or platforms.


Author(s):  
Michail Yu. Maslov ◽  
Yuri M. Spodobaev

Telecommunications industry evolution shows the highest rates of transition to high-tech systems and is accompanied by a trend of deep mutual penetration of technologies - convergence. The dominant telecommunication technologies have become wireless communication systems. The widespread use of modern wireless technologies has led to the saturation of the environment with technological electromagnetic fields and the actualization of the problems of protecting the population from them. This fundamental restructuring has led to a uniform dense placement of radiating fragments of network technologies in the mudflow areas. The changed parameters of the emitted fields became the reason for the revision of the regulatory and methodological support of electromagnetic safety. A fragmented structural, functional and parametric analysis of the problem of protecting the population from the technological fields of network technologies revealed uncertainty in the interpretation of real situations, vulnerability, weakness and groundlessness of the methodological basis of sanitary-hygienic approaches. It is shown that this applies to all stages of the electromagnetic examination of the emitting fragments of network technologies. Distrust arises on the part of specialists and the population in not only the system of sanitary-hygienic control, but also the safety of modern network technologies is being called into question. Growing social tensions and radio phobia are everywhere accompanying the development of wireless communication technologies. The basis for solving almost all problems of protecting the population can be the transfer of subjective methods and means of monitoring and sanitary-hygienic control of electromagnetic fields into the field of IT.


2020 ◽  
Vol 36 (16) ◽  
pp. 4527-4529
Author(s):  
Ales Saska ◽  
David Tichy ◽  
Robert Moore ◽  
Achilles Rasquinha ◽  
Caner Akdas ◽  
...  

Abstract Summary Visualizing a network provides a concise and practical understanding of the information it represents. Open-source web-based libraries help accelerate the creation of biologically based networks and their use. ccNetViz is an open-source, high speed and lightweight JavaScript library for visualization of large and complex networks. It implements customization and analytical features for easy network interpretation. These features include edge and node animations, which illustrate the flow of information through a network as well as node statistics. Properties can be defined a priori or dynamically imported from models and simulations. ccNetViz is thus a network visualization library particularly suited for systems biology. Availability and implementation The ccNetViz library, demos and documentation are freely available at http://helikarlab.github.io/ccNetViz/. Supplementary information Supplementary data are available at Bioinformatics online.


Epidemiologia ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 84-94
Author(s):  
Mst. Marium Begum ◽  
Osman Ulvi ◽  
Ajlina Karamehic-Muratovic ◽  
Mallory R. Walsh ◽  
Hasan Tarek ◽  
...  

Background: Chikungunya is a vector-borne disease, mostly present in tropical and subtropical regions. The virus is spread by Ae. aegypti and Ae. albopictus mosquitos and symptoms include high fever to severe joint pain. Dhaka, Bangladesh, suffered an outbreak of chikungunya in 2017 lasting from April to September. With the goal of reducing cases, social media was at the forefront during this outbreak and educated the public about symptoms, prevention, and control of the virus. Popular web-based sources such as the top dailies in Bangladesh, local news outlets, and Facebook spread awareness of the outbreak. Objective: This study sought to investigate the role of social and mainstream media during the chikungunya epidemic. The study objective was to determine if social media can improve awareness of and practice associated with reducing cases of chikungunya. Methods: We collected chikungunya-related information circulated from the top nine television channels in Dhaka, Bangladesh, airing from 1st April–20th August 2017. All the news published in the top six dailies in Bangladesh were also compiled. The 50 most viewed chikungunya-related Bengali videos were manually coded and analyzed. Other social media outlets, such as Facebook, were also analyzed to determine the number of chikungunya-related posts and responses to these posts. Results: Our study showed that media outlets were associated with reducing cases of chikungunya, indicating that media has the potential to impact future outbreaks of these alpha viruses. Each media outlet (e.g., web, television) had an impact on the human response to an individual’s healthcare during this outbreak. Conclusions: To prevent future outbreaks of chikungunya, media outlets and social media can be used to educate the public regarding prevention strategies such as encouraging safe travel, removing stagnant water sources, and assisting with tracking cases globally to determine where future outbreaks may occur.


Sign in / Sign up

Export Citation Format

Share Document