scholarly journals Materials Selection in Electromagnetic Launcher Design

1989 ◽  
Vol 111 (3) ◽  
pp. 319-326 ◽  
Author(s):  
E. P. Fahrenthold

The design of electromagnetic launchers includes a large materials selection component, with the use of available structural materials constrained by electrical performance considerations. Feasible material combinations for the composite structure are limited, with mechanical and thermo-electromagnetic simulations required to compare the performance of alternative designs. Numerical modeling studies suggest that next generation devices constructed for laboratory facilities or vehicular mounting may differ markedly in material composition, yet offer similar and significant structural improvements over conventional railgun designs.

Author(s):  
Deborah L. Thurston

Abstract A formal methodology is presented which may be used to evaluate design alternatives in the iterative design/redesign process. Deterministic multiattribute utility analysis is used to compare the overall utility or value of alternative designs as a function of the levels of several performance characteristics of a manufactured system. The evaluation function reflects the designers subjective preferences. Sensitivity analysis provides quantitative information as to how a design should be modified in order to increase its utility to the design decision maker. Improvements in one or more areas or performance and tradeoffs between attributes which would increase desirability of a design most may be quantified. A case study of materials selection and design in the automotive industry is presented. The methodology was applied to 6 automotive companies in the United States and Europe, and results are used to illustrate the steps followed in application.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000469-000475
Author(s):  
Rabindra N. Das ◽  
Frank D. Egitto ◽  
John M. Lauffer ◽  
Tim Antesberger ◽  
Voya R. Markovich

In this paper, the use of electrically conducting adhesives (ECA) to form z-axis interconnections for next generation packaging is discussed. In particular, current efforts related to Z-axis interconnections for device level fabrication, integration, and electrical performance are highlighted. A few optimized ECAs were used for hole fill applications to fabricate Z-axis interconnections in laminates. Conductive joints were formed during composite lamination using the ECA. Around 5,000 to 200,000 through holes in the joining cores, formed by laser or mechanical drilling, and having diameters ranging from 50 μm to 750 μm, were filled with an optimized conducting adhesive. The adhesive-filled joining cores/layers were laminated with circuitized subcomposites to produce a composite structure. As a case study, a variety of z-axis interconnect constructions for a flip-chip plastic ball grid array package, rigid-flex, rigid-rigid, package-interposer-package (PIP), RF structures, and PWBs were fabricated and evaluated at both the subcomposite and composite levels to understand structural and electrical integrity. Electrically, S-parameter measurements showed very low loss at multi-gigahertz frequencies. The losses were low enough to support typical SERDES up to 15 Gbps over 750 mm. The present process allows fabrication of z-interconnect conductive joints having diameters in the range of 55 to 500 μm. The processes and materials used to achieve smaller feature dimensions, satisfy stringent registration requirements, and achieve robust electrical interconnections are discussed.


1989 ◽  
Vol 111 (3) ◽  
pp. 326-331
Author(s):  
E. P. Fahrenthold

The relatively recent development of very high-energy density pulsed power supplies has motivated a renewed interest in the structural design of electromagnetic launchers. Cascade design electromagnetic launcher pressure vessels offer convenient maintenance access to high wear rate components of the structure while satisfying an unusual combination of electromagnetic, strength, and preloading constraints imposed on the system designer. Analysis for design of such structures focuses on the accurate characterization of fluid-structure interaction under dynamic asymmetric loading.


Author(s):  
Srichandan Kondamudi ◽  
Mallikarjuna Rao Pasumarthi

Multipole Field Electromagnetic Launchers (MFEML) is one of the radial electromagnetic launching mechanisms, which can propel a payload for long distances. This paper proposes formulae for inductance based on the magnetic flux distribution in the coils of MFEML. Flux lines flow is sectionalized, for each section reluctance formulae is derived based on the position of the projectile. Based on the principles of the Lorentz equation, magnetic forces are calculated. This paper presents an electrical and magnetic equivalent circuit of MFEML. The velocity and force characteristics are obtained for the proposed formulae. The results are validated using Finite element analysis.


2021 ◽  
Author(s):  
Nail Tosun ◽  
Ozan Keysan

<div>Simulations are crucial in the electromagnetic launcher (EML) researches on account of extreme physical conditions. More energy into the system adds weight to the model’s accuracy as the operation risk rises. In this paper, the electromagnetic impact of the bus structure is discovered in a recently developed EMFY-3 electromagnetic launcher, is presented. An H-shaped bus structure is used for current injection. However, experiments showed that the H-shaped bus changes inductance calculations. A careful examination is made to reveal the physical reasoning of the bus impact. We hypothesize that the rail portion surrounded with bus geometry has less inductance than the rest due to the eddy current created by rail current transients, which should be calculated carefully through numerical calculations, i.e., 3-D Finite Element Method (FEM). Two different simulation models were constructed to test the hypothesis. Moreover, rail currents, breech, and muzzle voltages are measured to investigate electromagnetic calculations. Results showed a good agreement with experiments where the bus structure was modeled explicitly. That aspect showed that the bus structure should be well-examined when multiple PPS are connected.</div>


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 001486-001513
Author(s):  
Jon Aday ◽  
Nozad Karim ◽  
Mike Devita ◽  
Steven Lee

There are 2 primary drivers for advanced substrate technologies to support the next generation of products. One driver is silicon designs which are shifting to 20–40 GBit applications. The band width of these products are requiring advanced materials, and designs which use much thinner cores making routing and manufacturing of these packages easier. The second driver is the move more advanced silicon nodes which also drives the importance for much better power delivery. Coreless substrates enable both of these applications by eliminating the core layer which enables much finner via pitchs to route signals and power/gnd planes. The thinness also reduces the bandwidth used up by the substrate which also enables better electrical performance. This paper will focus on the electrical drivers including simulation to support the structure, flip chip assembly of the package as well as the reliability data associated with the assembly.


2003 ◽  
Vol 94 (8) ◽  
pp. 5111 ◽  
Author(s):  
Y. X. Liu ◽  
J. G. Wan ◽  
J.-M. Liu ◽  
C. W. Nan

2013 ◽  
Vol 351-352 ◽  
pp. 254-259 ◽  
Author(s):  
David Mikolášek ◽  
Oldrich Sucharda ◽  
Jiri Brozovsky

This paper deals with a modeling of the composite timber-concrete ceiling structure. In the analysis of the composite structure, there is the slip using the contact elements and volume finite elements considered. Numerical modeling is complemented by an analytical calculation. This article aims to determine the stiffness of a particular type of glued strip. Totally eight models of the composite timber-concrete structure have been studied.


Sign in / Sign up

Export Citation Format

Share Document