Mixing of Fluids in Tanks by Gas Bubble Plumes

1987 ◽  
Vol 109 (2) ◽  
pp. 186-193 ◽  
Author(s):  
A. M. Godon ◽  
J. H. Milgram

The need to rapidly mix treating agent into the oil of a ruptured ship tank motivated scale model experiments of mixing in square-bottomed tanks by gas bubble plumes, The mixing time is primarily governed by the gas flow rate, the plume length and the tank base dimensions; and is quite insensitive to tank height. An empirical relationship between the degree of mixing and a single dimensionless variable is developed and an explanation of the relationship in terms of the fundamentals of the flow is provided.

2011 ◽  
Vol 239-242 ◽  
pp. 1573-1576 ◽  
Author(s):  
Lei Zhang ◽  
Xuan Pu Dong ◽  
Wen Jun Wang ◽  
Rong Ma ◽  
Ke Li ◽  
...  

A rotating gas bubble stirring technique with specially designed equipment has been developed for the production of light alloy semi-solid slurry. The equipment was specially designed to have temperature, rotation speed and gas flow rate control functions. An Al-Si aluminum alloy was applied as the experimental material. The results showed that large volume of semi-solid slurry could be achieved with the actual stirring temperature of 4 °C to 20 °C below the liquidus temperature of the alloy, and the rotation speed of 195 r/min, and the gas flow rate of 2 L/min. A strong convection and weak stirring effect which was induced by the rotating gas bubbles in the melt was founded responsible for the formation of the semi-solid slurry.


2020 ◽  
Vol 20 (7) ◽  
pp. 2915-2927
Author(s):  
Chen Lan ◽  
Jingan Chen ◽  
Jianyang Guo ◽  
Jingfu Wang

Abstract Bubble plumes are a popular hypolimnetic reaeration technique in deep-water reservoirs since they have the advantage of delivering direct reaeration to the hypolimnion. Improving the understanding of the integrated reaeration processes is beneficial to optimize the reaeration capacity of the aeration or oxygenation system. In this study, the discrete bubble model was first employed to design an oxygenation system for a sub-deep reservoir (the Aha Reservoir, southwest China, with water depths of 10–30 m). A new approach involving the discrete bubble model was used to determine the initial bubble size of the bubble plume applied. The intrusion models were demonstrated to be useful for designing the gas flow rate of the reaeration system. Using the intrusion models, we predicted the intrusion thickness and intrusion distance during operation for the first time. Subsequently, we verified the predictions and produced more realistic empirical formulas. At present, reports about recommendations on initial bubble size and gas flow rate are rare, and practical verification is absent. Taking the Aha Reservoir as an example, the initial bubble radius of 1 mm and the gas flow rate of 20 m3·h−1 were recommended for bubble plume oxygenation and were found to be successful in the field. Our understanding of the reaeration processes during the operation of the bubble plume system is far from comprehensive, but this study serves to highlight the potential of the discrete bubble model and the intrusion models for designing a bubble plume system in an individual lake.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 555 ◽  
Author(s):  
Luis E. Jardón-Pérez ◽  
Daniel R. González-Morales ◽  
Gerardo Trápaga ◽  
Carlos González-Rivera ◽  
Marco A. Ramírez-Argáez

In this work, the effects of equal (50%/50%) or differentiated (75%/25%) gas flow ratio, gas flow rate, and slag thickness on mixing time and open eye area were studied in a physical model of a gas stirred ladle with dual plugs separated by an angle of 180°. The effect of the variables under study was determined using a two-level factorial design. Particle image velocimetry (PIV) was used to establish, through the analysis of the flow patterns and turbulence kinetic energy contours, the effect of the studied variables on the hydrodynamics of the system. Results revealed that differentiated injection ratio significantly changes the flow structure and greatly influences the behavior of the system regarding mixing time and open eye area. The Pareto front of the optimized results on both mixing time and open eye area was obtained through a multi-objective optimization using a genetic algorithm (NSGA-II). The results are conclusive in that the ladle must be operated using differentiated flow ratio for optimal performance.


Nafta-Gaz ◽  
2020 ◽  
Vol 76 (11) ◽  
pp. 828-836
Author(s):  
Adrian Dudek ◽  

Since 2016, Oil and Gas Institute – National Research Institute (INiG – PIB) has been conducting new research to determine the relationship between ambient temperature and gas temperature in industrial diaphragm gas meters during the measurement, and to develop new recommendations for billing systems using industrial diaphragm gas meters with a throughput of until 25 m3/h. In the first stage, work was carried out, in which the obtained test results confirmed that the heat exchange process in an industrial diaphragm gas meter depends on the ambient temperature, the gas temperature at the inlet to the gas meter, the flow rate of the gas flowing, as well as the casing surface and the gas volume of the gas meter. In the next stage, work was carried out to determine the relationship between ambient temperature and gas temperature at the industrial diaphragm gas meter connection during the measurement. The obtained results undermined the thesis, which indicated that the gas inlet temperature is equal to the gas temperature at the depth of the gas network. In the last stage, work was carried out to determine the course of changes in gas temperature in industrial diaphragm gas meters as a function of ambient temperature and cyclical changes of the gas flow rate, which were to reflect the work of gas meters installed at customers’ premises. The analysis of the obtained test results once again showed a strong dependence of the gas temperature inside industrial diaphragm gas meters on the ambient temperature, but also on the flow rate of gas. The obtained results of laboratory tests will be used to carry out a thermodynamic description of the heat exchange process in an industrial diaphragm gas meter, which would allow the determination of the gas billing temperature as a function of the ambient temperature, the temperature of the inflowing gas and the gas flow rate. The calculated gas temperature values could be used to determine the temperature correction factors applicable when settling gas consumers billed on the basis of measurement with the use of industrial diaphragm gas meters.


1985 ◽  
Vol 39 (6) ◽  
pp. 916-920 ◽  
Author(s):  
R. K. Skogerboe ◽  
S. J. Freeland

This paper describes the results of the first stage of an investigation designed to extend present knowledge of the factors affecting aerosol production, transport, vaporization, and atomization in analytical spectroscopy systems. It focuses on factors controlling aspiration of aqueous solutions. The results demonstrate that the effect of gas flow on the pressure drop induced at the tip of the solution draw tube can be described by a simple linear equation; that the relationship between gas flow rate and solution nebulization rate can also be modelled by a simple equation; and that these relationships are not adequately represented by the Hagen-Poiseulle equation, as is often claimed.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 917
Author(s):  
Luis E. Jardón-Pérez ◽  
Carlos González-Rivera ◽  
Marco A. Ramirez-Argaez ◽  
Abhishek Dutta

Ladle refining plays a crucial role in the steelmaking process, in which a gas stream is bubbled through molten steel to improve the rate of removal of impurities and enhance the transport phenomena that occur in a metallurgical reactor. In this study, the effect of dual gas injection using equal (50%:50%) and differentiated (75%:25%) flows was studied through numerical modeling, using computational fluid dynamics (CFD). The effect of gas flow rate and slag thickness on mixing time and slag eye area were studied numerically and compared with the physical model. The numerical model agrees with the physical model, showing that for optimal performance the ladle must be operated using differentiated flows. Although the numerical model can predict well the hydrodynamic behavior (velocity and turbulent kinetic energy) of the ladle, there is a deviation from the experimental mixing time when using both equal and differentiated gas injection at a high gas flow rate and a high slag thickness. This is probably due to the insufficient capture of the velocity field near the water–oil (steel–slag) interface and slag emulsification by the numerical model, as well as the complicated nature of correctly simulating the interaction between both gas plumes.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 565 ◽  
Author(s):  
Hongliang Zhao ◽  
Tingting Lu ◽  
Pan Yin ◽  
Liangzhao Mu ◽  
Fengqin Liu

In this study, a water-model experiment and numerical simulation were carried out in a pilot ISASMELT furnace to study the factors affecting mixing time. The experimental results were compared to the simulation results to test the accuracy of the latter. To study the internal factors that affect the mixing time, the turbulent viscosity and flow field were calculated using simulation. In addition, following previous research, external factors that influence the mixing time including the depth of the submerged lance, lance diameter, gas flow rate, and the presence of a swirler were studied to investigate their effect on the flow regime. The results indicated that the mixing time is controlled by the turbulent viscosity and velocity vector. In addition, it was found that the lance diameter should not exceed 3.55 cm to maintain sufficient energy for stirring the bath. Finally, the optimal gas flow rate that offers the best mixing efficiency was found to be 50 Nm3/h.


2012 ◽  
Vol 1373 ◽  
Author(s):  
Adrián M. Amaro-Villeda ◽  
Jorge A. González Bello ◽  
Marco A. Ramírez-Argáez.

ABSTRACTA 1/6th gas–stirred water physical model of a 140 ton steel ladle is used to evaluate mixing in air–water and air–water–oil systems to model argon–steel and argon–steel–slag systems respectively. Thickness of the slag layer is kept constant at 0.004 m. The effect of the gas flow rate (7, 17, and 37 l/min), plug position (0, 1/3, ½, and 2/3 of the ladle radius, R), and number of plugs (1, 2, and 3) on mixing time is also analyzed in this work. Gas is injected at the bottom of the ladle under several plug configurations varying both position and number of plugs. Chemical uniformity of 95% is selected as mixing criterion. Mixing times are experimentally determined when a tracer is suddenly injected into the ladle and the model is instrumented with a pH meter to track the time evolution of the tracer concentration (NaOH 1 M solution) in a given location inside the ladle. Process conditions for best mixing in both water–gas and water-gas–slag systems are: a single plug located at 2/3 of the ladle radius with a gas flow rate of 17 l/min.


2012 ◽  
Vol 535-537 ◽  
pp. 1308-1313
Author(s):  
De Gang Qu ◽  
Dong Xiang ◽  
Peng Mou ◽  
Han Wang ◽  
Ying Li Gong ◽  
...  

Because of its small average droplet size, low carrier gas flow rate and the droplets not easy to splash etc, the ultrasonic atomizing spray technology is particularly suitable for making photoresist films. In order to get a reasonable spray scan interval, the parabolic deposition model was used to study the relationship between the spray overlap width and the photoresist film thickness and uniformity, and it can be concluded that the thickness of the film increases and the thickness variance of the film decreases oscillatorily along with the increasing of the spray overlap width.To obtain good uniformity of the photoresist film, the dimensionless overlap width should be at least greater than 0.15.


Sign in / Sign up

Export Citation Format

Share Document