An Analysis of Mechanical Face Seal Vibrations

1981 ◽  
Vol 103 (3) ◽  
pp. 428-433 ◽  
Author(s):  
I. Etsion ◽  
Y. Dan

The motion of a flexibly mounted ring in a mechanical face seal is described in its major three degrees of freedom. The equations of motion include fluid film as well as flexible support forces and moments. These equations are linearized using small perturbation analysis. It is shown that for small perturbation the axial motion is uncoupled with the two angular ones and is always stable. A condition for angular stability is derived relating seal operation conditions to its geometry and other design parameters.

Author(s):  
J. A. Carretero ◽  
R. P. Podhorodeski ◽  
M. Nahon

Abstract This paper presents a study of the architecture optimization of a three-degree-of-freedom parallel mechanism intended for use as a telescope mirror focussing device. The construction of the mechanism is first described. Since the mechanism has only three degrees of freedom, constraint equations describing the inter-relationship between the six Cartesian coordinates are given. These constraints allow us to define the parasitic motions and, if incorporated into the kinematics model, a constrained Jacobian matrix can be obtained. This Jacobian matrix is then used to define a dexterity measure. The parasitic motions and dexterity are then used as objective functions for the optimizations routines and from which the optimal architectural design parameters are obtained.


2013 ◽  
Vol 430 ◽  
pp. 53-59 ◽  
Author(s):  
Nicolae Doru Stanescu ◽  
Dinel Popa

Our paper realizes a study of the vibrations of an engine excited by a harmonic force and sustained by four identical neo-Hookean springs of negligible masses. The considered model is one with three degrees of freedom (one translation and two rotations) and we obtain for it the equations of motion. Using these equations, we determine for the unexcited system the equilibrium positions and their stability. We also study the small oscillations about the stable equilibrium positions and we find the fundamental eigenpulsations of the system. For the case of the excited system we perform a numerical study considering the situation when the pulsation of the excitation is far away from the eigenpulsations and the situation when the pulsation of the excitation is closed to one eigenpulsation, highlighting the beat phenomenon.


1971 ◽  
Vol 93 (1) ◽  
pp. 191-195 ◽  
Author(s):  
Desideriu Maros ◽  
Nicolae Orlandea

This paper is a further development of the kinematic problem presented in our 1967 paper [1] in which we have obtained the transmission functions for different orders of plane systems with many degrees of freedom. This paper establishes the corresponding system of differential equations of motion beginning with these functions. The purpose of this paper is to facilitate computer programming. Our study is based on the work of R. Beyer [2, 3] and is the first original addition to his papers. A second original contribution to Beyer’s theories is the deductive method of solution, from general to particular, which we have, incorporated in our work. Beyer concluded that the cases having two or three degrees of freedom can be considered as particular solutions to the results obtained.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jan Awrejcewicz ◽  
Roman Starosta ◽  
Grażyna Sypniewska-Kamińska

The dynamic response of a nonlinear system with three degrees of freedom, which is excited by nonideal excitation, is investigated. In the considered system the role of a nonideal source is played by a direct current motor, where the central axis of the rotor is not coincident with the axis of rotation. This translation generates a torque whose magnitude depends on the angular velocity. During the system operation a general coordinate assigned to the nonideal source grows rapidly as a result of rotation. We propose the decomposition of the equations of motion in such a way to extract the solution which is directly related to the rotation of an unbalanced rotor. The remaining part of the solution describes pure oscillation depending on the dynamical behaviour of the whole system. The decomposed equations are solved numerically. The influence of selected system parameters on the rotor vibration is examined. The presented approach can be applied to separate vibration and rotation of motions in many other engineering systems.


Author(s):  
Philip Varney ◽  
Itzhak Green

Mechanical face seals are constitutive components of turbomachines, which in turn can be constitutive to other systems (e.g. aircraft). Furthermore, the rotating element of a face seal is inextricably coupled to the turbomachine via a flexible mount, and the stationary seal element is coupled to the rotating seal element via the fluid film existing between the seal faces. Consequentially, understanding interactions between the seal and turbomachine is important for quantifying seal performance and improving its design. With few exceptions, previous works study the face seal dynamics independent from the rotordynamics. In addition, most prior investigations consider only angular and axial seal dynamics and neglect eccentric (i.e. lateral) deflections of the seal element(s). For the first time, this work develops a comprehensive and novel model of a mechanical face seal in the inertial reference frame including coupled rotordynamics and inertial maneuver loads of the overall system. The model is developed for a general seal geometry where both seal elements, stationary and rotating, are flexibly mounted and allowed to undergo angular, axial, and eccentric deflections. In addition, the seal model presented here accounts for transient operation, fluid shear forces, seal face contact, friction, and thermoelastic deformation. Finally, various faults due to manufacturing imperfections, component flaws, and/or installation errors can be accounted for by incorporating static angular misalignment of both seal elements, dynamic angular misalignment of the rotating seal element, eccentric rotating imbalance, and axial offset of the rotating seal element center of mass. Throughout this work, the equations of motion developed are valid for both steady-state and transient operation. This comprehensive model significantly advances the state of the art in mechanical face seal dynamic modeling and represents a pivotal step towards analyzing seal performance regarding a broad diversity of realistic problems.


Author(s):  
Scott B. Zagorski ◽  
Dennis A. Guenther ◽  
Gary J. Heydinger ◽  
Anmol S. Sidhu ◽  
Dale A. Andreatta

A model of a roll simulator for recreational off-highway vehicles (ROV) is presented. Models of each sub-system are described including the equations of motion, the braking, hydraulic and roll motor systems. Derivation of the equations of motion, obtained using Lagrange’s energy equation, demonstrates that they have three degrees-of-freedom (two dynamic, one static) and are coupled and highly non-linear. Results from the hydraulic sub-system illustrated that the amount of entrapped air in the system can significantly influence the response. Comparisons of the model with experimental data from the actual roll simulator showed close agreement. The greatest difference was with motor pressure. The acceleration levels and roll motions for both the model and experimental data showed excellent correlation.


1979 ◽  
Vol 101 (3) ◽  
pp. 263-271 ◽  
Author(s):  
E. H. Chang ◽  
V. K. Garg ◽  
C. H. Goodspeed ◽  
S. P. Singh

A mathematical model for a six-axle locomotive is developed to investigate its dynamic response on tangent track due to vertical and/or lateral track irregularities. The model represents the locomotive as a system of thirty-nine degrees of freedom. The nonlinearities considered in the model are primarily associated with stiffness and damping characteristics of the primary suspension system. The transient and steady-state responses of the locomotive are obtained for the linear and nonlinear primary suspension systems. The response time-histories of the locomotive obtained by integrating the generalized equations of motion are presented. The potential uses of the model are indicated for studying the influence of different design parameters and predicting subsequent dynamic response.


1999 ◽  
Vol 122 (3) ◽  
pp. 633-638 ◽  
Author(s):  
Takahisa Kato ◽  
Souta Watanabe ◽  
Hiroshige Matsuoka

The authors present a three-degrees-of-freedom (3-DOF) model of an in-contact headslider/disk interface (HDI) system by which the dynamic characteristics of the in-contact headslider-suspension assembly can be obtained. Four regimes with respect to the interface of headslider and disk surface are shown to take the meniscus force of lubricant on the disk surface into account. The equations of motion of the in-contact headslider considering the meniscus force at each regime and the calculation results for the disk with sinusoidal undulation are described. [S0742-4787(00)01802-6]


Author(s):  
Se´bastien Briot ◽  
Anatol Pashkevich ◽  
Damien Chablat

In this paper, a new methodology for the optimal design of the secondary geometric parameters (shape of links, size of the platform, etc.) of parallel kinematic machine tools is proposed. This approach aims at minimizing the total mass of the robot under position accuracy constraints. This methodology is applied to two translational parallel robots with three degrees-of-freedom (DOF): the Y-STAR and the UraneSX. The proposed approach is able to speed up the design process and to help the designer to find more quickly a set of design parameters.


2019 ◽  
Vol 13 (4) ◽  
pp. 226-232
Author(s):  
Arkadiusz Trąbka

Abstract Forging hammers are machines whose operation causes negative effects both at the place of their foundation (the soil settlement) and in their surroundings (e.g., vibrations propagating to the other devices, noise, etc.). Knowledge of the parameters characterizing the time history of the force that arises as a result of impact of a ram on a shaped material is of fundamental importance for the correct analysis of both the structure of the hammer and its impact on the surroundings. In the paper, the effect of the shape and duration of a pulse load on the dynamic response of a hammer-foundation forging system was assessed. An analytical method of description of the forces that arise as a result of impact of the ram on the forged material, using different forms of pulses was presented. The forces defined in this way as loads in a mathematical model of three degrees of freedom forging system were used. The equations of motion derived from d’Alembert’s principle were solved numerically in the Matlab program. The analyses for eight forms of the pulse loads with the same pulse sizes but different durations were performed. The results in the graphs were presented. It was found, among other things, that a greater impact on the maximum displacement, velocity and acceleration of each component of the hammer-foundation system as well as on the maximum forces transmitted to the soil has the duration of a pulse than its shape.


Sign in / Sign up

Export Citation Format

Share Document