Analysis of Gas-Lubricated Foil Journal Bearings

1983 ◽  
Vol 105 (4) ◽  
pp. 647-655 ◽  
Author(s):  
H. Heshmat ◽  
J. A. Walowit ◽  
O. Pinkus

This work is concerned with an evaluation of the performance of a gas journal bearing using a spring supported compliant foil as the bearing surface. The analysis, conducted for both single and multipad configurations, is concerned with the effects that the various structural, geometric, and operational variables have on bearing behavior. Following the solution of the relevant differential equation, tabular or graphical solutions are provided for a range of relevant geometric and operational parameters. The solutions include values of the colinear and cross-coupled spring coefficients due to both structural and hydrodynamic stiffness. Desirable design features with regard to start of bearing arc, selection of load angle, number of pads and degree of compliance are discussed.

1965 ◽  
Vol 87 (3) ◽  
pp. 568-576 ◽  
Author(s):  
J. H. Vohr ◽  
C. Y. Chow

A differential equation is obtained for the smoothed “overall” pressure distribution around a herringbone-grooved, gas-lubricated journal bearing operating with a variable film thickness. The equation is based on the limiting case of an idealized bearing for which the number of grooves approaches an infinite number. A numerical solution to the differential equation is obtained valid for small eccentricities. This solution includes the case where the journal is undergoing steady circular whirl. In addition to the usual plain bearing parameters L/D, Λ, and whirl speed ratio ω3/(ω1 + ω2), the behavior of a grooved bearing also depends on four additional parameters: The groove angle β, the relative groove width α, the relative groove depth H0, and a compressibility number, Λs, which is based on the relative speed between the grooved and smooth members of the bearing. Results are presented showing bearing radial force and attitude angle as functions of β, α, H0, Λs, Λ, and whirl speed ratio.


1967 ◽  
Vol 89 (4) ◽  
pp. 433-438 ◽  
Author(s):  
S. B. Malanoski

Shallow grooving in a herringbone pattern has been proposed to enhance the stability of both gas and liquid-lubricated journal bearings. It has been shown theoretically that this possibility is particularly advantageous for unloaded journal bearings. This paper describes corroborating experiments. The experiments included the running of an unloaded bearing up to speeds of 60,000 rpm and the collection of steady-state load-displacement, attitude angle data at intermediate speeds up to and including 60,000 rpm. No sign of bearing whirl instability was detected. There was good correlation between theoretical and experimental data. Design data for the partially grooved journal bearing is included for future designs.


1964 ◽  
Vol 86 (2) ◽  
pp. 405-413 ◽  
Author(s):  
R. J. Wernick ◽  
C. H. T. Pan

The Reynolds equation applicable to a self-acting partial-arc gas journal bearing is perturbed in terms of the compressibility number Λ. The resulting set of equations is then put into a standard form and Galerkin’s method is used to obtain bearing loads and stability derivatives. These results are expressed in a power series in Λ.


2020 ◽  
Vol 8 (6) ◽  
pp. 4392-4399

Wear is an influencing parameter which reduces the overall life of a machine and its parts. The wear rate and coefficient of friction under the same conditions of speed, load, lubrication and time were calculated for a set of materials used as journal bearings. Since journal bearings are important in a variety of applications, a wise selection of material with a constant low wear rate and low coefficient of friction is essential. The four materials tested for this purpose include Molybdenum Disulphide (MoS2 ), Stainless Steel (SS 304), Nylon 66, INCONEL 625. The basic methodology for determining wear and friction of these materials involves the use of a pin-on-disc test apparatus. The materials taken for testing are made into a pin of diameter and length 8 mm and 25 mm respectively. Scanning Electron Microscope (SEM) analysis and surface roughness measurements were carried out to study the properties. Hence, INCONEL 625 was found to be the ideal material for journal bearing applications due to its low wear rate, no fluctuation in wear rate, lower coefficient of friction and better mechanical properties compared to others.


Author(s):  
L. X. Liu ◽  
Z. S. Spakovszky

The high-speed micro hydrostatic gas journal bearings used in the high-power density MIT micro-engines are of very low aspect ratio with an L/D of less than 0.1 and are running at surface speeds of order 500 m/s. These ultra-short high-speed bearings exhibit whirl instability limits and a dynamic behavior much different from conventional hydrostatic gas bearings. The design space for stable high-speed operation is confined to a narrow region and involves singular behavior (Spakovszky and Liu (2003)). This together with the limits on achievable fabrication tolerance that can be achieved in the silicon chip manufacturing technology severely affects bearing operability and limits the maximum achievable speeds of the micro turbomachinery. This paper introduces a novel variation of the axial-flow hydrostatic micro-gas journal bearing concept which yields anisotropy in bearing stiffness. By departing from axial symmetry and introducing biaxial symmetry in hydrostatic stiffness, the bearing’s top speed is increased and fabrication tolerance requirements are substantially relieved making more feasible extended stable high-speed bearing operation. The objectives of this work are: (1) to characterize the underlying physical mechanisms and the dynamic behavior of this novel bearing concept, and (2) to report on the design, implementation and test of this new micro-bearing technology. The technical approach involves the combination of numerical simulations, experiment, and simple, first principles based modeling of the gas bearing flow field and the rotordynamics. A simple description of the whirl instability threshold with stiffness anisotropy is derived explaining the instability mechanisms and linking the governing parameters to the whirl ratio and stability limit. An existing analytical hydrostatic gas bearing model is extended and modified to guide the bearing design with stiffness anisotropy. Numerical simulations of the full non-linear governing equations are conducted to validate the theory and the novel bearing concept. Experimental results obtained from a micro-bearing test device are presented and show good agreement between the theory and the measurements. The theoretical increase in achievable bearing top speed and the relief in fabrication tolerance requirements due to stiffness anisotropy are quantified and important design implications and guidelines for micro gas journal bearings are discussed.


1993 ◽  
Vol 46 (7) ◽  
pp. 392-398 ◽  
Author(s):  
K. Czołczyn´ski

This paper reviews a numerical investigation of the problem of small self-excited vibrations in gas journal bearings. The method of analysis is based on the Hopf bifurcation theory, in which the approximate periodic solutions of nonlinear equations of motion are computed using the Fredholm alternative. This theory enables us to construct the bifurcating periodic solutions and to determine their stability. The equations of motion of the investigated gas journal bearing have been formulated after estimating the damping and stiffness coefficients of a gas film. For this purpose, a new method of identification has been proposed.


2004 ◽  
Vol 129 (1) ◽  
pp. 177-184 ◽  
Author(s):  
L. X. Liu ◽  
Z. S. Spakovszky

The high-speed microhydrostatic gas journal bearings used in the high-power density MIT microengines are of very low aspect ratio with an L∕D of less than 0.1 and are running at surface speeds of order 500m∕s. These ultra-short high-speed bearings exhibit whirl instability limits and a dynamic behavior much different from conventional hydrostatic gas bearings. The design space for stable high-speed operation is confined to a narrow region and involves singular behavior (Spakovszky and Liu, 2005, “Scaling Laws for Ultra-Short Hydrostatic Gas Journal Bearings,” ASME J. Vibr. Acoust., 127(3), pp. 254–261). This together with the limits on achievable fabrication tolerance, which can be achieved in the silicon chip manufacturing technology, severely affects bearing operability and limits the maximum achievable speeds of the microturbomachinery. This paper introduces a novel variation of the axial-flow hydrostatic micro gas journal bearing concept, which yields anisotropy in bearing stiffness. By departing from axial symmetry and introducing biaxial symmetry in hydrostatic stiffness, the bearing's top speed is increased and fabrication tolerance requirements are substantially relieved making more feasible extended stable high-speed bearing operation. The objectives of this work are: (i) to characterize the underlying physical mechanisms and the dynamic behavior of this novel bearing concept and (ii) to report on the design, implementation, and test of this new microbearing technology. The technical approach involves the combination of numerical simulations, experiment, and simple, first-principles-based modeling of the gas bearing flow field and the rotordynamics. A simple description of the whirl instability threshold with stiffness anisotropy is derived explaining the instability mechanisms and linking the governing parameters to the whirl ratio and stability limit. An existing analytical hydrostatic gas bearing model is extended and modified to guide the bearing design with stiffness anisotropy. Numerical simulations of the full nonlinear governing equations are conducted to validate the theory and the novel bearing concept. Experimental results obtained from a microbearing test device are presented and show good agreement between the theory and the measurements. The theoretical increase in achievable bearing top speed and the relief in fabrication tolerance requirements due to stiffness anisotropy are quantified and important design implications and guidelines for micro gas journal bearings are discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-25 ◽  
Author(s):  
Peng Li ◽  
Fang Zeng ◽  
Sen Xiao ◽  
Dong Zhen ◽  
Hao Zhang ◽  
...  

The purpose of this paper is to numerically study the effect of texture bottom profile on static, dynamic, and stability performance parameters of hydrodynamic journal bearings. The different performance parameters of square textured journal bearings with different bottom profiles are numerically investigated and compared with those of smooth journal bearing. There are five bottom profiles of this square texture: flat, curved, isosceles triangle (T1), oblique triangle (T2), and oblique triangle (T3). The static and dynamic coefficients are calculated by solving the steady-state Reynolds equation and the perturbation equations with FDM numerical technique. The performance characteristics under different texture distribution, depth, and bottom profiles are studied, and the current numerical results show that the selection of texture parameters is crucial to improve the static, dynamic, and stability performances of hydrodynamic journal bearing. Meanwhile, it is also found that the square texture with a flat bottom profile has a higher improvement in the values of static performance parameters in comparison to those other bottom profiles. Moreover, the simulation results indicate that the dynamic and stability performances improvement of textured journal bearing is also significant, especially when the eccentricity ratio is smaller.


1963 ◽  
Vol 85 (2) ◽  
pp. 247-255 ◽  
Author(s):  
Paul C. Warner

The liquid lubricated partial journal bearing is analyzed in an approximate yet accurate manner in order to obtain its static and dynamic properties. The solution of the governing differential equation is analytical rather than numerical, permitting inexpensive computation of results over a very wide range of the parameters involved.


1983 ◽  
Vol 105 (4) ◽  
pp. 638-646 ◽  
Author(s):  
H. Heshmat ◽  
J. A. Walowit ◽  
O. Pinkus

This work is concerned with an evaluation of the performance of a gas thrust bearing using what amounts to a spring supported compliant foil as the bearing surface. To enhance the load capacity of such a device, the leading portion of the foil is given an appropriate converging geometry. The paper offers an analytical investigation of the elastohydrodynamics of the compliant foil bearing, and the effects that the various structural and operational variables have on bearing behavior. Following the solution of the relevant differential equation, the geometry of the thrust sector is first optimized, then solutions are provided for a range of relevant geometrical and operational parameters. The parametric study shows that the optimum geometry for a bearing with the common OD to ID ratio of 2 is β=45deg,b=0.5,h¯1>10 In addition to the geometric parameters, there are also the structural parameters of the foil. The load capacity is shown to increase as the compliance of the bearing rises. While at moderate Λ’s high values of compliance yield the highest load capacity, at high Λ, the optimum compliance is some intermediate value, in our case, α* = 1. Since the stiffness of the bearing is a function of both the structural and hydrodynamic film stiffnesses, high loads tend to flatten the values of K for the softer bearings, leaving essentially the structural stiffness as the dominating spring constant.


Sign in / Sign up

Export Citation Format

Share Document