Observations of Liquid Droplet Behavior and Oil Film Formation in O/W Type Emulsion Lubrication

1988 ◽  
Vol 110 (2) ◽  
pp. 348-353 ◽  
Author(s):  
T. Nakahara ◽  
T. Makino ◽  
K. Kyogoku

The behavior of liquid droplets in O/W type emulsions flowing between a flat glass plate and a metal roller was observed by means of a microscope. The behavior of the droplets introduced into the EHL film was found to be related to the streamlines of the continuous water phase in the vicinity of the inlet zone. It was observed that the oil droplets which penetrated into the EHL zone formed an oily pool (an oily film zone) containing water droplets in the inlet zone close to the EHL zone. This oily pool was a W/O emulsion rich in oil caused by phase inversion. The effects of oil concentration, emulsifier content and rolling speed on the area of the oily pool were investigated, and it was found that the extent of the oily pool was influenced by the rolling speed as well as oil concentration. The EHD film thickness was measured by means of optical interferometry with use of two wavelengths, and the measured results were compared with the calculated ones employing the starvation theory of Wolveridge et al. and the empirical equation of Wymer and Cameron for the region of the oil pool. It was found that course droplets play an important role in film formation by causing the formation of the oily pool in the low speed range. In the high speed range, however, a fine O/W emulsion forms the film.

2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Hirotoshi Sasaki ◽  
Yuka Iga

This study explains why the deep erosion pits are formed in liquid droplet impingement erosion even though the droplets uniformly impinge on the entire material surface. Liquid droplet impingement erosion occurs in fluid machinery on which droplets impinge at high speed. In the process of erosion, the material surface becomes completely roughened by erosion pits. In addition, most material surface is not completely smooth and has some degree of initial roughness from manufacturing and processing and so on. In this study, to consider the influence of the roughness on the material surface under droplet impingement, a numerical analysis of droplets impinging on the material surface with a single wedge and a single bump was conducted with changing offsets between the droplet impingement centers and the roughness centers on each a wedge bottom and a bump top. As results, two mechanisms are predicted from the present numerical results: the erosion rate accelerates and transitions from the incubation stage to the acceleration stage once roughness occurs on the material surface; the other is that deep erosion pits are formed even in the case of liquid droplets impinging uniformly on the entire material surface.


Author(s):  
Yuichi Shibata ◽  
Takehiko Yanai ◽  
Osamu Okamoto ◽  
Masahiro Kawaji

The field of microfluidics is developing with advances in MEMS, biotechnology and μ-TAS technologies. In various devices, interfacial energy is a dominant factor for liquid movement in a microchannel. The surface tension and interfacial tension values are necessary to analyze the liquid behavior in the microchannel. Evaluating the values of interfacial tension is especially important for multiphase flow. A pendant drop method is usually used to measure the interfacial tension, however, this method has some inconveniences. For example, the pendant drop method demands strict accuracy for measuring the droplet size when the droplet has a non-spherical shape. Moreover, it needs an accurate value of the density difference between the two liquids. In this work, a new measurement method named “Liquid-bridging Induced Micro Contact Method” has been developed to overcome the weaknesses of the existing methods. In a previous study, we obtained the interfacial tension from bridging of two liquid droplets on the tip of opposing round metal rods. In this study, we have examined the liquid-bridging of two extruded liquid droplets out of a micro glass tube. By measuring the radii of curvature of each liquid surface and interface, we calculate the Laplace pressure on the surface and interface, and derive the interfacial tension value using the Laplace equation. To prove these two methods are reliable, we have compared the results obtained in this experiment to that of the pendant drop method. As a liquid droplet comes into contact with an opposite liquid droplet the phenomenon is recorded using a CCD camera and high speed camera. The results show that the values of interfacial tension obtained from two methods are approximately the same. Therefore, the liquid-bridging induced micro contact method has been shown to be capable of interfacial tension measurements.


1994 ◽  
Vol 116 (2) ◽  
pp. 310-319 ◽  
Author(s):  
D. Zhu ◽  
G. Biresaw ◽  
S. J. Clark ◽  
T. J. Kasun

This paper presents a set of experimental results of the EHL film thickness with oil-in-water (O/W) emulsions in a wide range of rolling speed for different oil concentrations and pH values. The O/W emulsions have wide applications in metal-forming and machining processes as well as hydraulic systems. However, their lubrication mechanisms are very complex and have not been fully understood. A newly developed high speed optical EHL rig was used to measure the film thickness and observe the two-phase flow around the EHL point and line contacts. Experimental observations indicate that phase inversion/oil pool formation mechanism around the inlet zone takes place only at very low speeds, which are most likely far below practical speed ranges for major industrial applications. When the speed is low, the lubricant film thickness is dominated by the bulk properties of oil phase, and can be estimated by the conventional EHL theory together with the consideration of starvation effect. After the speed exceeds a certain limit, called first critical speed, there is a transition region, where no stable oil pool is observed and the film thickness starts to decrease, or increases slightly then decreases. It is believed that in this transition region there is still a considerable amount of oil concentrated in the inlet zone, and this local oil concentration decreases as the speed increases. The film thickness appears to be dominated by the entrainment of oil-enriched two-phase lubricant in the inlet zone. The increase of film thickness is due to entraining effect and the decrease due to the increased oil phase starvation. If the speed is further increased exceeding a second critical speed, the film thickness will stop decreasing and start to increase again. In this high speed region the local oil concentration of entrained lubricant in the inlet zone is believed to become quite constant and close to that of the bulk lubricant supply. The film thickness, therefore, continuously increases for all of the tested line and point contact cases as the speed goes up, and is always significantly smaller than that of neat oil but larger than that of pure water. The destabilized emulsions with lower pH values can form more stable oil pools and considerably thicker films. This is because the oil droplets in these low pH emulsions can be more easily trapped and brought into the contact by the solid surfaces. However, for the tested emulsions, the oil pools still cannot survive reasonably high speeds.


2011 ◽  
Vol 264-265 ◽  
pp. 1234-1239
Author(s):  
Shih Feng Tseng ◽  
Kuo Cheng Huang ◽  
Don Yau Chiang ◽  
Ming Fei Chen ◽  
Sheng Yi Hsiao ◽  
...  

This paper presents an approach to utilize high precision pulsed Nd:YAG laser to fabricate a rough array-pattern on a soda-lime glass plate by a laser-induced backside writing (LIBW) process, and a laser-induced plasma assisted ablation (LIPAA) technique. The current study investigates the effect of process parameters such as single-shot laser exposure time and number of passes on the material removal rate. After depositing 695 nm thick Teflon thin film on the glass plate, the surface of the laser micro-machined template becomes hydrophobic. The surface roughness, annular groove profile and surface micrograph were measured by an atomic force microscope, a profilometer, and a scanning electron microscope, respectively. A uniform liquid droplet by the sessile drop method is generated on the hydrophobic template. Droplet characteristics, such as contacted angle, size, and shape, are measured with a surface tension analyzer and microscope. This work also discusses the relationship between the formed droplets and the process recipe of the micro-machined template. The proposed approach can apply to future for uniform lens array formation.


Author(s):  
Prahlad Singh ◽  
R. K. Pandey ◽  
Yogendra Nath

Effective lubrication during the cold rolling is vital in achieving desirable tolerance and surface quality over the metallic sheets. However, in the process of cold rolling, it has been established that the lubricant’s viscosity drastically reduces (viscosity thinning) due to huge viscous heat dissipation in the lubricating film at the elevated rolling speeds. Thinning of lubricant viscosity increases the escaping tendency of the lubricant from the inlet zone. Thus, scarcity (starvation) of lubricant prevails in the inlet zone of roll and strip interface. Based on the present investigation, it is observed that the existence of starvation seems to be beneficial in terms of reduced temperature rise and less quantity of lubricating oil required provided there is a continuous film at the strip-roll interface.


2020 ◽  
Vol 13 (3) ◽  
pp. 115-129
Author(s):  
Shin’ichi Aratani

High speed photography using the Cranz-Schardin camera was performed to study the crack divergence and divergence angle in thermally tempered glass. A tempered 3.5 mm thick glass plate was used as a specimen. It was shown that two types of bifurcation and branching existed as the crack divergence. The divergence angle was smaller than the value calculated from the principle of optimal design and showed an acute angle.


2010 ◽  
Vol 139-141 ◽  
pp. 477-480
Author(s):  
Ryoji Nakamura ◽  
Shuya Hanada ◽  
Shinji Kumai ◽  
Hisaki Watari

An inline hot rolling was operated on 5182 aluminum alloy strip cast using a vertical type high speed caster (VHSTRC) at the speed of 60 m/min. A porosity existing at center line of the thickness and a ripple mark on the surface, these are typical defects of the strip cast by the VHSTRC, could be improved by the inline rolling. The rolling speed was as same as the roll-casting-speed of 60m/min. The temperature of the strip, when the inline rolling was operated, was 450oC. The reduction of the strip of the inline rolling was 35%.


2021 ◽  
Vol 11 (9) ◽  
pp. 4015
Author(s):  
Peter Hellwig ◽  
Klaus Schricker ◽  
Jean Pierre Bergmann

High processing speeds enormously enlarge the number of possible fields of application for laser processes. For example, material removal for sheet cutting using multiple passes or precise mass corrections can be achieved by means of spatter formation. For a better understanding of spatter formation at processing speeds of several hundred meters per minute, characterizations of the processing zone are required. For this purpose, a 400 W single-mode fiber laser was used in this study to process stainless steel AISI 304 (1.4301/X5CrNi18-10) with speeds of up to 600 m/min. A setup was developed that enabled a lateral high-speed observation of the processing zone by means of a glass plate flanking. This approach allowed for the measurement of several dimensions, such as the penetration depth, spatter formation, and especially, the inclination angle of the absorption front. It was shown that the loss of mass started to significantly increase when the absorption front was inclined at about 60°. In combination with precise weighings, metallographic examinations, and further external process observations, these findings provided an illustration of four empirical process models for different processing speeds.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Joseph J. S. Shang ◽  
Hong Yan

Abstract Nearly all illuminating classic hypersonic flow theories address aerodynamic phenomena as a perfect gas in the high-speed range and at the upper limit of continuum gas domain. The hypersonic flow is quantitatively defined by the Mach number independent principle, which is derived from the asymptotes of the Rankine-Hugoniot relationship. However, most hypersonic flows encounter strong shock-wave compressions resulting in a high enthalpy gas environment that always associates with nonequilibrium thermodynamic and quantum chemical-physics phenomena. Under this circumstance, the theoretic linkage between the microscopic particle dynamics and macroscopic thermodynamics properties of gas is lost. When the air mixture is ionized to become an electrically conducting medium, the governing physics now ventures into the regimes of quantum physics and electromagnetics. Therefore, the hypersonic flows are no longer a pure aerodynamics subject but a multidisciplinary science. In order to better understand the realistic hypersonic flows, all pertaining disciplines such as the nonequilibrium chemical kinetics, quantum physics, radiative heat transfer, and electromagnetics need to bring forth.


1982 ◽  
Vol 104 (4) ◽  
pp. 750-757 ◽  
Author(s):  
C. T. Avedisian

A study of high-pressure bubble growth within liquid droplets heated to their limits of superheat is reported. Droplets of an organic liquid (n-octane) were heated in an immiscible nonvolatile field liquid (glycerine) until they began to boil. High-speed cine photography was used for recording the qualitative aspects of boiling intensity and for obtaining some basic bubble growth data which have not been previously reported. The intensity of droplet boiling was found to be strongly dependent on ambient pressure. At atmospheric pressure the droplets boiled in a comparatively violent manner. At higher pressures photographic evidence revealed a two-phase droplet configuration consisting of an expanding vapor bubble beneath which was suspended a pool of the vaporizing liquid. A qualitative theory for growth of the two-phase droplet was based on assuming that heat for vaporizing the volatile liquid was transferred across a thin thermal boundary layer surrounding the vapor bubble. Measured droplet radii were found to be in relatively good agreement with predicted radii.


Sign in / Sign up

Export Citation Format

Share Document