OTEC Plant Response and Control Analysis

1982 ◽  
Vol 104 (3) ◽  
pp. 208-215 ◽  
Author(s):  
W. L. Owens

An analysis is presented which allows prediction of closed-cycle OTEC power plant system response and control. Two basic operational control schemes are presented, which are primarily related to the type of seawater pumps employed. Variable flow seawater pumps allow optimization of the OTEC thermal-cycle state points for maximization of net generated power. Constant flow pumps are cheaper and simpler, but do not allow direct control over the evaporator and condenser operating temperatures. A system of nonlinear differential equations representing the basic elements of a constant seawater flow OTEC plant with turbine bypass flow control has been formulated for computer solution. Typical normalized response curves are presented for pressures, temperatures, mass flow rates, and generator speed for a small-scale, 50-kW OTEC plant design.

2012 ◽  
Vol 529 ◽  
pp. 295-300
Author(s):  
Jie Yao ◽  
Yong Hong Zhu

In order to stimulate the movement of small scale helicopters, DOF flight test platform based on the similarity theory has been thought out. Accordingly, considering the platform to be the researching object and combing the Lagrange-Euler equation with the equivalent moment method, the system kinetic model is worked out and the physical parameter is pre-estimated. The relationship between the lift force and the change of the rotation speed is acquired by the experiment with the fixed collective angle. According to the dynamic equation, a PID revised feed-forward controlling algorithm with robust characteristic was devised and the MATLAB simulation is applied to verify fast astringency and validity of the controller


Author(s):  
G. Lin ◽  
B. Balachandran ◽  
E. Abed

Analytical and numerical investigations conducted into the control of dive-plane dynamics of supercavitating bodies are presented. Particular attention is paid to tail-slap behavior. A fundamental understanding of the solution structure in terms of equilibrium and other solutions developed through the effort is discussed, and control schemes used to realize stable inner loop dynamics are presented. Dominant nonlinearities associated with planning forces are taken into account in the model and controllability of the system with the fin input and/or the cavitator input has been examined. The describing function method is brought to bear upon this problem and the presence of limit cycles in the controlled and uncontrolled cases are explored. The nonlinear planing force associated with tail-slap behavior is approximated as a piecewise linear function and the results obtained from switching feedback control analysis are provided.


2013 ◽  
Vol 340 ◽  
pp. 862-866
Author(s):  
Nie Zi ◽  
Chen Ming

In the paper, we present a linearized mathematical model of a small scale coaxial helicopter with Bell-Hiller stabilizer bar, which is extracted from numerical linearization of a non-linear mathematical model with small perturbation theory. Stability and control derivatives calculated by numerical method are compared and analyzed for stability and control analysis on coaxial helicopters equipped with different type stabilizer bar. The study indicates that the coaxial helicopter with stabilizer bar fixed on the upper rotors has better capability on stability and control.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4749
Author(s):  
Ulises D. Lubo-Matallana ◽  
Miguel Ángel Zorrozua ◽  
José Félix Miñambres

The injection of apparent power to self-consumption buses generates voltage variations during network operation, which, when properly monitored, could support voltage regulation and control. In this paper, we propose a linear sensitivity modelling, quite useful for studies of voltage regulation with distributed energy resources (DER). This modelling consists of two analytical improvement steps: first, a full formulation for the voltage deviations, and second, the influence of line capacitance as Q-injections at the points of common couplings (PCCs). Our proposal is based on the linear topological sensitivity of an existing network (as a function of the line parameters X, R, and Bc), branch power flow (active–reactive power (P-Q)), and power injections at the PCCs. Here, the linear sensitivity algorithm is applied to a modified IEEE 33-bus distribution system to demonstrate its extended effectiveness to voltage monitoring and control scenarios. Its application estimates and compensates in a better way the voltage deviations with regard to the operating desired voltage (|V|op) constraints, using distributed power injections at the PCCs. Numerical results always showed a curtailment of the relative error against common simplifications of the electrical modelling in steady-state, thus simulating two critical scenarios of operation production–consumption for the existing system response. The proposed algorithm was validated considering as reference the voltage profile outputs of the load flow analysis, using the Newton–Raphson method via DIgSILENT, in terms of its accuracy, silhouette shape along the feeder and with regard to the application of reactive compensation as an analytical case study for voltage improvement in active distribution networks.


2007 ◽  
Vol 158 (8) ◽  
pp. 235-242 ◽  
Author(s):  
Hans Rudolf Heinimann

The term «precision forestry» was first introduced and discussed at a conference in 2001. The aims of this paper are to explore the scientific roots of the precision concept, define «precision forestry», and sketch the challenges that the implementation of this new concept may present to practitioners, educators, and researchers. The term «precision» does not mean accuracy on a small scale, but instead refers to the concurrent coordination and control of processes at spatial scales between 1 m and 100 km. Precision strives for an automatic control of processes. Precision land use differs from precision engineering by the requirements of gathering,storing and managing spatio-temporal variability of site and vegetation parameters. Practitioners will be facing the challenge of designing holistic, standardized business processes that are valid for whole networks of firms,and that follow available standards (e.g., SCOR, WoodX). There is a need to educate and train forestry professionals in the areas of business process re-engineering, computer supported management of business transactions,methods of remote sensing, sensor technology and control theory. Researchers will face the challenge of integrating plant physiology, soil physics and production sciences and solving the supply chain coordination problem (SCCP).


Author(s):  
Joseph Ayers

This chapter describes how synthetic biology and organic electronics can integrate neurobiology and robotics to form a basis for biohybrid robots and synthetic neuroethology. Biomimetic robots capture the performance advantages of animal models by mimicking the behavioral control schemes evolved in nature, based on modularized devices that capture the biomechanics and control principles of the nervous system. However, current robots are blind to chemical senses, difficult to miniaturize, and require chemical batteries. These obstacles can be overcome by integration of living engineered cells. Synthetic biology seeks to build devices and systems from fungible gene parts (gene systems coding different proteins) integrated into a chassis (induced pluripotent eukaryotic cells, yeast, or bacteria) to produce devices with properties not found in nature. Biohybrid robots are examples of such systems (interacting sets of devices). A nascent literature describes genes that can mediate organ levels of organization. Such capabilities, applied to biohybrid systems, portend truly biological robots guided, controlled, and actuated solely by life processes.


Author(s):  
Anthony Ryan Hatch ◽  
Julia T. Gordon ◽  
Sonya R. Sternlieb

The new artificial pancreas system includes a body-attached blood glucose sensor that tracks glucose levels, a worn insulin infusion pump that communicates with the sensor, and features new software that integrates the two systems. The artificial pancreas is purportedly revolutionary because of its closed-loop design, which means that the machine can give insulin without direct patient intervention. It can read a blood sugar and administer insulin based on an algorithm. But, the hardware for the corporate artificial pancreas is expensive and its software code is closed-access. Yet, well-educated, tech-savvy diabetics have been fashioning their own fully automated do-it-yourself (DIY) artificial pancreases for years, relying on small-scale manufacturing, open-source software, and inventive repurposing of corporate hardware. In this chapter, we trace the corporate and DIY artificial pancreases as they grapple with issues of design and accessibility in a content where not everyone can become a diabetic cyborg. The corporate artificial pancreas offers the cyborg low levels of agency and no ownership and control over his or her own data; it also requires access to health insurance in order to procure and use the technology. The DIY artificial pancreas offers patients a more robust of agency but also requires high levels of intellectual capital to hack the devices and make the system work safely. We argue that efforts to increase agency, radically democratize biotechnology, and expand information ownership in the DIY movement are characterized by ideologies and social inequalities that also define corporate pathways.


Sign in / Sign up

Export Citation Format

Share Document