Effect of Damping on the Lateral Critical Speeds of Rotor-Bearing Systems

1976 ◽  
Vol 98 (2) ◽  
pp. 505-513 ◽  
Author(s):  
Pranabesh De Choudhury ◽  
Stephen J. Zsolcsak ◽  
Eugene W. Barth

Rigid support lateral critical speeds along with undamped system critical speeds and mode shapes are presented for typical rotor-bearing systems. The steady-state unbalance response analysis presented shows the effect of fluid-film bearing damping on the rotor response. Experimental results show reasonably good correlation with analytical results. The investigation shows that a rational rotor-bearing system design approach can be made for high-speed rotating machinery using the analytical tools.

Author(s):  
A. Rehman ◽  
K. S. Ahmed ◽  
F. A. Umrani ◽  
B. Munir ◽  
A. Mehboob ◽  
...  

The design and development of the rotating machinery require a precise identification of its dynamic response for efficient operation and failure prevention. Determination of critical speeds and mode shapes is crucial in this regard. In this paper, a finite element model (FEM) based on the Euler beam theory is developed for investigating the dynamic behavior of flexible rotors. In-house code in Scilab environment, an open source platform, is developed to solve the matrix equation of motion of the rotor-bearing system. The finite element model is validated by the impact hammer test and the dynamic testing performed on the rotors supported on a purpose-built experimental setup. Bearing stiffness is approximated by using the Hertzian contact theory. Obtaining the critical speeds and mode shapes further improves the understanding of dynamic response of rotors. This study paves way towards advanced research in rotordynamics in Faculty of Mechanical Engineering, GIK Institute.


Author(s):  
Rahul Kar ◽  
John Vance

Rotordynamic instability can be disastrous for the operation of high speed turbomachines in the industry. Most ‘instabilities’ are due to de-stabilizing cross coupled forces from variable fluid dynamic pressure around a rotor component, acting in the direction of forward whirl and causing subsynchronous orbiting of the rotor. However, all subsynchronous whirling are not unstable and methods to diagnose the potentially unstable kind from the benign are critical to the health of the rotor-bearing system. In this study, methods to demarcate between the two are detailed. Orbit shape, “frequency tracking” and agreement of subsynchronous frequencies with known eigenvalues are used as diagnostic tools. It is shown that a change in synchronous phase angle produced by de-stabilizing cross coupled forces can be used as a definitive indicator of incipient instability. Typical signatures of subharmonic vibrations induced from non-linear stiffness of the rotor- bearing system are examined analytically and through experiments.


Author(s):  
T. N. Shiau ◽  
J. R. Chang ◽  
C. H. Kang ◽  
C. Y. Liao

In this study, the dynamic analysis of a domestic high speed rotor bearing system in turbo machines by using global assumed mode with different polynomial is investigated. This system consists of rotating multi flexible shaft, rigid disks and stiffness bearing effects. The analysis includes the whirl speeds, critical speeds, and mode shapes. The Global Assumed Modes Method (GAMM) and Finite Element Method (FEM) are employed to model the rotor-bearing system, and the accuracy of the results is discussed. With the application of GAMM, similarity transformation of different types of polynomials and interval has been investigated. The results show that using different polynomial function in GAMM have similar results, and which are also be agreed with the FEM. The results also show that the number of polynomial can be increased as the interval of the assumed mode function is altered. Consequently, the convergence of higher order modes will be more accurate.


1997 ◽  
Vol 119 (3) ◽  
pp. 658-667 ◽  
Author(s):  
J. P. Hathout ◽  
A. El-Shafei

This paper describes the proportional integral (PI) control of hybrid squeeze film dampers (HSFDS) for active control of rotor vibrations. Recently it was shown that the automatically controlled HSFD based on feedback of rotor speed can be a very efficient device for active control of rotor vibration when passing through critical speeds. Although considerable effort has been put into the study of steady-state vibration control, there are few methods in the literature applicable to transient vibration control of rotor-bearing systems. Rotating machinery may experience dangerously high dynamic loading due to the sudden mass unbalance that could be associated with blade loss. Transient run-up and coast down through critical speeds when starting up or shutting down rotating machinery induces excessive bearing loads at criticals. In this paper, PI control is proposed as a regulator for the HSFD system to attenuate transient vibration for both sudden unbalance and transient runup through critical speeds. A complete mathematical model of this closed-loop system is simulated on a digital computer. Results show an overall enhanced behavior for the closed-loop rotor system. Gain scheduling of both the integral gain and the reference input is incorporated into the closed-loop system with the PI regulator and results in an enhanced behavior of the controlled system.


2015 ◽  
Author(s):  
Yuriy Batrak ◽  
Roman Batrak ◽  
Dmytro Berin ◽  
Andriy Mikhno

Since 1869 the main goal of whirling vibration calculations of rotating machinery was to determine critical speeds. Currently, all Classification Societies require a propulsion shafting whirling vibration calculation (also named bending or lateral vibration calculation) in the scope of the critical speeds i.e. free whirling vibration calculation. However, fatigue failure of the bracket and aft stern tube bearings, destruction of high-speed shafts with universal joints, noise and hull vibrations, generated by shafting, indicate the importance and inevitability of forced whirling vibration calculations. This paper presents some latest results of free and forced whirling vibration calculations obtained using the software intended for shaft design.


Author(s):  
P. K. Kankar ◽  
Satish C. Sharma ◽  
S. P. Harsha

The vibration response of a rotor bearing system is extremely important in industries and is challenged by their highly non-linear and complex properties. This paper focuses on performance prediction using response surface method (RSM), which is essential to the design of high performance rotor bearing system. Response surface method is utilized to analysis the effects of design and operating parameters on the vibration response of a rotor-bearing system. A test rig of high speed rotor supported on rolling bearings is used. Vibration response of the healthy ball bearing and ball bearings with various faults are obtained and analyzed. Distributed defects are considered as surface waviness of the bearing components. Effects of internal radial clearance and surface waviness of the bearing components and their interaction are analyzed using design of experiment (DOE) and RSM.


Author(s):  
Thimothy Harold Gonsalves ◽  
Mohan Kumar Garje Channabasappa ◽  
Ramesh Motagondanahalli Rangarasaiah

Author(s):  
Crystal A. Heshmat ◽  
Hooshang Heshmat ◽  
Mark J. Valco ◽  
Kevin C. Radil ◽  
Christopher Della Corte

This paper describes an oil-free, 150 Hp turbocharger that was successfully operated with compliant foil bearings in a range of pitch and roll angles, including vertical operation, thereby demonstrating its viability for aircraft applications. On a gas test stand the turbocharger was operated to 120,000 rpm, under extreme conditions. In addition, the compliant foil bearing-supported turbocharger successfully tolerated shock and vibration of 40 g. Advanced technologies have been applied to the second generation of this turbocharger, shown in Figure 1, including self acting, compliant foil hydrodynamic air bearings with advanced coatings capable, of operation above 815 °C (1500°F). Journal foil bearings with maximum load capacity up to 670 kPa (97 psi) were used in conjunction with thrust foil bearings capable of maximum loads to 570 kPa (83 psi). Bearing component development tests demonstrated 30,000 start stop cycles at 815 °C (1500°F) with a newly developed, solid lubricant coating, KOROLON™. KOROLON™ exhibits a coefficient of friction of less than 0.1 at a wide range of temperatures. Current-designed foil bearings with KOROLON™ have immensely decreased turbolag, allowing acceleration from rest to over 100,000 rpm in less than 2 seconds. Advanced bearing stiffness maintained rotor total axial end-to-end motion within 100 microns (0.004 inch). Total radial static and dynamic motion was controlled within 25 microns (0.001 inch). Development of this high speed turbomachine included bearing and solid lubricant component development tests, rotor-bearing dynamic simulator qualification and gas stand tests of the assembled turbocharger. Gas stand and simulator test results revealed stable bearing temperatures, low rotor vibrations, good shock tolerance and the ability of the rotor bearing system to sustain overspeed conditions beyond 120,000 rpm. This combination of component and integrated rotor-bearing system technology addresses many of the issues associated with application of compliant foil bearings to industrial compressors, blowers, and gas turbine engines, overcoming many of the inherently show-stopping and debilitating features of rolling element bearings, i.e., speed and temperature limitations.


Author(s):  
Deborah A. Wilde ◽  
Luis San Andre´s

Current applications of gas film bearings in high-speed oil-free micro-turbomachinery (<0.4 MW) require calibrated predictive tools to successfully deploy their application to mass-produced systems, for example oil-free turbochargers. The present investigation details the linear rotordynamic analysis of a test rotor supported on externally pressurized gas bearings. Model predictions are compared with the test rotordynamic response determined through comprehensive experiments conducted on a small rotor supported on three lobed hybrid (hydrostatic/hydrodynamic) rigid gas bearings. Predictions for the rotor-bearing system synchronous response to imbalance show good agreement with measurements during rotor coast downs, and manifest a decrease in damping ratio as the level of external pressurization increases. The rotor-bearing eigenvalue analysis forwards natural frequencies in accordance with the measurements, and null damping ratios evidence the threshold speeds of rotordynamic instability. Estimated whirl frequency ratios are typically 50% of rotor speed, thus predicting sub synchronous instabilities at lower rotor speeds than found experimentally when increasing the magnitude of feed pressurization. Rationale asserting the nature of the discrepancies calls for further analysis.


Sign in / Sign up

Export Citation Format

Share Document