Propulsion shafting whirling vibration: case studies and perspective

2015 ◽  
Author(s):  
Yuriy Batrak ◽  
Roman Batrak ◽  
Dmytro Berin ◽  
Andriy Mikhno

Since 1869 the main goal of whirling vibration calculations of rotating machinery was to determine critical speeds. Currently, all Classification Societies require a propulsion shafting whirling vibration calculation (also named bending or lateral vibration calculation) in the scope of the critical speeds i.e. free whirling vibration calculation. However, fatigue failure of the bracket and aft stern tube bearings, destruction of high-speed shafts with universal joints, noise and hull vibrations, generated by shafting, indicate the importance and inevitability of forced whirling vibration calculations. This paper presents some latest results of free and forced whirling vibration calculations obtained using the software intended for shaft design.

Author(s):  
Yuri Kligerman ◽  
Asif Grushkevich ◽  
Mark S. Darlow ◽  
Adrian Zuckerberger

Abstract There have been a number of papers published that concern the design and operation of electromagnetic, eddy-current dampers for controlling lateral vibration of rotating machinery. Many of these papers have included analysis approaches and all have been generally effective for low-speed operations. There have been a few reports concerning high-speed (supercritical) operations and many of these have indicated instability problems, but none of these have provided a valid analysis to account for instability. That is, all of the analytical approaches have ignored the disk rotation, relative to the magnetic field, and no obvious sources of instability have been found. In this paper, we will present our work in which we have rederived the analyses of this system in which we have not made the common assumption of no rotation between the disk and the magnetic field. In this case, the potential of instability for supercritical speed operation is clear and, in fact, the equivalent negative damping contribution of the eddy-current damper, under these conditions, has a negative effect on the system even if not fully unstable. We have carefully performed a series of experimental tests which corroborate this analytical approach. Finally, we briefly discuss alternative eddy-current damper design approaches that could be considered to provide effective damping at all speeds and avoid these instability problems.


1976 ◽  
Vol 98 (2) ◽  
pp. 505-513 ◽  
Author(s):  
Pranabesh De Choudhury ◽  
Stephen J. Zsolcsak ◽  
Eugene W. Barth

Rigid support lateral critical speeds along with undamped system critical speeds and mode shapes are presented for typical rotor-bearing systems. The steady-state unbalance response analysis presented shows the effect of fluid-film bearing damping on the rotor response. Experimental results show reasonably good correlation with analytical results. The investigation shows that a rational rotor-bearing system design approach can be made for high-speed rotating machinery using the analytical tools.


1984 ◽  
Vol 12 (1) ◽  
pp. 44-63 ◽  
Author(s):  
Y. D. Kwon ◽  
D. C. Prevorsek

Abstract Radial tires for automobiles were subjected to high speed rolling under load on a testing wheel to determine the critical speeds at which standing waves started to form. Tires of different makes had significantly different critical speeds. The damping coefficient and mass per unit length of the tire wall were measured and a correlation between these properties and the observed critical speed of standing wave formation was sought through use of a circular membrane model. As expected from the model, desirably high critical speed calls for a high damping coefficient and a low mass per unit length of the tire wall. The damping coefficient is particularly important. Surprisingly, those tire walls that were reinforced with steel cord had higher damping coefficients than did those reinforced with polymeric cord. Although the individual steel filaments are elastic, the interfilament friction is higher in the steel cords than in the polymeric cords. A steel-reinforced tire wall also has a higher density per unit length. The damping coefficient is directly related to the mechanical loss in cyclic deformation and, hence, to the rolling resistance of a tire. The study shows that, in principle, it is more difficult to design a tire that is both fuel-efficient and free from standing waves when steel cord is used than when polymeric cords are used.


1997 ◽  
Vol 119 (3) ◽  
pp. 658-667 ◽  
Author(s):  
J. P. Hathout ◽  
A. El-Shafei

This paper describes the proportional integral (PI) control of hybrid squeeze film dampers (HSFDS) for active control of rotor vibrations. Recently it was shown that the automatically controlled HSFD based on feedback of rotor speed can be a very efficient device for active control of rotor vibration when passing through critical speeds. Although considerable effort has been put into the study of steady-state vibration control, there are few methods in the literature applicable to transient vibration control of rotor-bearing systems. Rotating machinery may experience dangerously high dynamic loading due to the sudden mass unbalance that could be associated with blade loss. Transient run-up and coast down through critical speeds when starting up or shutting down rotating machinery induces excessive bearing loads at criticals. In this paper, PI control is proposed as a regulator for the HSFD system to attenuate transient vibration for both sudden unbalance and transient runup through critical speeds. A complete mathematical model of this closed-loop system is simulated on a digital computer. Results show an overall enhanced behavior for the closed-loop rotor system. Gain scheduling of both the integral gain and the reference input is incorporated into the closed-loop system with the PI regulator and results in an enhanced behavior of the controlled system.


Author(s):  
Chao Liu ◽  
Dongxiang Jiang

Crack failures in rotating machinery can result in catastrophic accidents, and they are are difficult to detect online. Condition monitoring is widely applied in field to detect changes of vibration, and form diagnostic features. However, effective features in vibration of the cracked rotor need more tests, especially validating the features with experiments. This work carried out an experimental study on cracked rotors in laboratory. The experiments are as following: (I) vibration of the rotor in normal condition is firstly tested, where lateral vibration and torsional vibration are measured; (II) torsional excitation is exerted on driven end of rotor system, and vibration characteristics of the rotor are tested; (III) cracked rotors are tested with transverse and slant cracks, respectively. With the measured signals, comparisons of vibrations in normal rotor and cracked rotors are carried out. The results show that, the transverse crack introduces more significant changes in 1X frequency and coupled frequency, while the slant crack employs larger changes in 2X frequency. And variation of phases of 1X frequency is presented. Also, the crack plays an impact on the torsional responses.


1971 ◽  
Vol 8 (03) ◽  
pp. 327-333
Author(s):  
R. H. Salzman

This paper presents a semi-graphical approach for finding the first critical speed of a stepped shaft with finite bearing stiffness. The method is particularly applicable to high-speed turbine rotors with journal bearings. Using Rayleigh's Method and the exact solution for whirling of a uniform shaft with variable support stiffness, estimates of the lowest critical speed are easily obtained which are useful in the design stage. First critical speeds determined by this method show good agreement with values computed by the Prohl Method for the normal range of bearing stiffness. A criterion is also established for determining if the criticals are "bearing critical speeds" or "bending critical speeds," which is of importance in design. Discusser E. G. Baker


Author(s):  
Bo Zhang ◽  
Shemiao Qi ◽  
Sheng Feng ◽  
Haipeng Geng ◽  
Yanhua Sun ◽  
...  

Two multileaf gas foil journal bearings with backing bump foils and one set of gas foil thrust bearings were designed, fabricated, and used in a 100 kW class microturbine simulated rotor system to ensure stability of the system. Meanwhile, a preliminary test rig had been built to verify the simulated system stability. The rotor synchronous and subsynchronous responses were well controlled by using of the gas foil bearings. It is on the multileaf gas foil bearings with backing bump foils that the test was conducted and verified for the first time in open literatures. The success in the experiments shows that the design and fabrication of the rotor and the gas foil bearings can provide a useful guide to the development of the advanced high speed rotating machinery.


2011 ◽  
Vol 197-198 ◽  
pp. 1599-1603
Author(s):  
Zhen Wei Wang ◽  
Ping An Du ◽  
Ya Ting Yu

Mechanical components are subjected heavy alternate load in industries, such as engine crankshaft, wheel axle, etc. The fatigue failure happens after a long work loading, which affects the production cost, safe and time. So the fatigue life predication is fundamental for the mechanical components design. Especially, it is very important for heavy, high-speed machinery. In this paper, both main fatigue life predication formulas are introduced briefly, including Manson-Coffinn formula and Damage strain model. Then, shortages of above life predication formulas are pointed out, and coefficients are explained in detail. Further calculation error analysis is conducted on the basis of experiments on 16 materials. Results show that above life predication formulas lack calculation accuracy. Finally, it is pointed out that coefficients of fatigue life predication formulas are dependent of material performance. So it is unreliable that coefficients are constants for Manson-Coffin and Damage strain model.


Author(s):  
B A Marlow

Experience shows that the reliability of large turbogenerators depends substantially on the quality of detail design, particularly the quality of the mechanical design. In addition to the design problems common to all high-speed rotating machinery, the mechanical design of generators must take account of certain electrical requirements. This paper gives an insight into the detail mechanical design of large turbogenerators paying particular attention to the interaction of electrical requirements on the mechanical design.


Sign in / Sign up

Export Citation Format

Share Document